Giải toán 9, giải bài tập toán lớp 9 đầy đủ đại số và hình học
Bài 7. Biến đổi đơn giản biểu thức chứa căn thức bậc ha..
Lý thuyết về biến đổi đơn giản biểu thức chứa căn thức bậc hai( tiếp theo)>
Khử mẫu của biểu thức lấy căn Trục căn thức ở mẫu
1. Khử mẫu của biểu thức lấy căn
Với hai biểu thức A, B mà \(AB\geq 0\) và \(B\neq 0\), ta có:
\(\sqrt{\dfrac{A}{B}}=\dfrac{\sqrt{A\cdot B}}{\left | B \right |}.\)
Ví dụ: Với \(x\ne 0\) ta có: \(\sqrt {\dfrac{{11}}{x}} = \dfrac{{\sqrt {11.x} }}{{\left| x \right|}}\)
2. Trục căn thức ở mẫu
Với hai biểu thức A, B mà \(B>0,\) ta có
\(\dfrac{A}{\sqrt{B}}=\dfrac{A\sqrt{B}}{B}.\)
Với các biểu thức A, B, C mà \(A\geq 0\) và \(A\neq B^{2}\), ta có
\(\dfrac{C}{\sqrt{A}\pm B }=\dfrac{C(\sqrt{A}\mp B)}{A-B^{2}}.\)
Với các biểu thức A, B, C mà \(A\geq 0\), \(B\geq 0\) và \(A\neq B\), ta có:
\(\dfrac{C}{\sqrt{A}\pm \sqrt{B}}=\dfrac{C(\sqrt{A}\mp \sqrt{B})}{A-B}.\)
Ví dụ: Trục căn thức ở mẫu của biểu thức \(\dfrac{3}{{\sqrt x + 2}}\) với \(x\ge 0\)
Ta có:
\(\begin{array}{l}
\dfrac{3}{{\sqrt x + 2}} = \dfrac{{3\left( {\sqrt x - 2} \right)}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}}\\
= \dfrac{{3\sqrt x - 6}}{{{{\left( {\sqrt x } \right)}^2} - 4}}\\
= \dfrac{{3\sqrt x - 6}}{{x - 4}}
\end{array}\)
CÁC DẠNG TOÁN VỀ BIẾN ĐỔI BIỂU THỨC CHỨA CĂN
Dạng 1: Đưa thừa số vào trong dấu căn, đưa thừa số ra ngoài dấu căn
Phương pháp:
Sử dụng các công thức
* Đưa thừa số ra ngoài dấu căn
Với hai biểu thức $A,B$ mà $B \ge 0$, ta có $\sqrt {{A^2}B} = \left| A \right|\sqrt B = \left\{ \begin{array}{l}A\sqrt B \,\,{\rm{khi}}\,\,A \ge 0\\ - A\sqrt B \,{\rm{khi}}\,A < 0\end{array} \right.$
* Đưa thừa số vào trong dấu căn
+) $A\sqrt B = \sqrt {{A^2}B} $ với $A \ge 0$ và $B \ge 0$
+) $A\sqrt B = - \sqrt {{A^2}B} $ với $A < 0$ và $B \ge 0$
Dạng 2: So sánh hai căn bậc hai
Phương pháp:
Sử dụng công thức đưa thừa số ra ngoài dấu căn hoặc đưa thừa số vào trong dấu căn để so sánh hai căn bậc hai theo mối liên hệ
$0 \le A < B \Leftrightarrow \sqrt A < \sqrt B $
Dạng 3: Rút gọn biểu thức chứa căn thức bậc hai
Phương pháp:
Sử dụng công thức đưa thừa số ra ngoài dấu căn hoặc đưa thừa số vào trong dấu căn và hằng đẳng thức $\sqrt {{A^2}} = \left| A \right|$.
Sử dụng công thức trục căn thức ở mẫu
Dạng 4: Trục căn thức ở mẫu
Phương pháp:
Sử dụng các công thức
+) Với các biểu thức $A,B$ mà $A.B \ge 0;B \ne 0$, ta có $\sqrt {\dfrac{A}{B}} = \dfrac{{\sqrt {AB} }}{{\left| B \right|}}$
+) Với các biểu thức $A,B$ mà $B > 0$, ta có $\dfrac{A}{{\sqrt B }} = \dfrac{{A\sqrt B }}{B}$
+) Với các biểu thức $A,B,C$ mà $A \ge 0,A \ne {B^2}$, ta có $\dfrac{C}{{\sqrt A + B}} = \dfrac{{C\left( {\sqrt A - B} \right)}}{{A - {B^2}}};\dfrac{C}{{\sqrt A - B}} = \dfrac{{C\left( {\sqrt A + B} \right)}}{{A - {B^2}}}$
+) Với các biểu thức $A,B,C$ mà $A \ge 0,B \ge 0,A \ne B$ ta có
$\dfrac{C}{{\sqrt A - \sqrt B }} = \dfrac{{C\left( {\sqrt A + \sqrt B } \right)}}{{A - B}}$; $\dfrac{C}{{\sqrt A + \sqrt B }} = \dfrac{{C\left( {\sqrt A - \sqrt B } \right)}}{{A - B}}$
Dạng 5: Giải phương trình
Phương pháp:
+) Tìm điều kiện
+) Sử dụng công thức đưa thừa số ra ngoài dấu căn hoặc đưa thừa số vào trong dấu căn để đưa phương trình về dạng cơ bản
+) So sánh điều kiện rồi kết luận nghiệm.


Các bài khác cùng chuyên mục




