Bài 55 trang 30 SGK Toán 9 tập 1

Bình chọn:
4.7 trên 37 phiếu

Giải bài 55 trang 30 SGK Toán 9 tập 1. Phân tích thành nhân tử (với a, b, x, y là các số không âm)

Đề bài

Phân tích thành nhân tử (với \(a,\ b,\ x,\ y\) là các số không âm)

a) \(ab + b\sqrt a  + \sqrt a  + 1\)

b) \(\sqrt {{x^3}}  - \sqrt {{y^3}}  + \sqrt {{x^2}y}  - \sqrt {x{y^2}} \)

Phương pháp giải - Xem chi tiết

+ Sử dụng các phương pháp kết hợp các phương pháp để phân tích đa thức thành nhân tử:

                 -Phương pháp đặt nhân tử chung

                - Phương pháp nhóm hạng tử.

                - Phương pháp dùng hằng đẳng thức

+ Sử dụng hằng đẳng thức:

           \(a^2+2ab+b^2=(a+b)^2\)

           \(a-b)(a+b)=a^2-b^2\)

           \(a^3-b^3=(a-b)(a^2+ab+b^2)\)

+ \((\sqrt a)^2=a,\)  với \(a \ge 0\).

Lời giải chi tiết

a) Ta có:

\(ab+b\sqrt{a}+\sqrt{a}+1=(ab+b\sqrt{a})+(\sqrt{a}+1)\)

                              \(=(ba+b\sqrt{a})+(\sqrt{a}+1)\)

                             \(=\left[ {b.\left( {\sqrt a .\sqrt a } \right) + b\sqrt a} \right] + \left( {\sqrt a  + 1} \right)\)

                             \(=[(b\sqrt a).\sqrt a+ b\sqrt a.1]+(\sqrt a + 1)\)

                            \(=b\sqrt{a}(\sqrt{a}+1)+(\sqrt{a}+1)\)

                             \(=(\sqrt{a}+1)(b\sqrt{a}+1)\).

b) Ta có:

Cách 1: Sử dụng hằng đẳng thức số \(7\):

\(\sqrt{x^{3}}-\sqrt{y^{3}}+\sqrt{x^{2}y}-\sqrt{xy^{2}}\)

\(=[(\sqrt x)^3-(\sqrt y)^3]+ (\sqrt{x.xy}-\sqrt{y.xy})\)

\(=(\sqrt x-\sqrt y).[(\sqrt x)^2 + \sqrt x.\sqrt y+(\sqrt y)^2]\)

\(+ (\sqrt{x}.\sqrt{xy}-\sqrt{y}.\sqrt{xy})\)

\(=(\sqrt x-\sqrt y).[(\sqrt x)^2 + \sqrt x.\sqrt y+(\sqrt y)^2]\)

\(+ \sqrt{xy}.(\sqrt{x}-\sqrt{y})\)

\(=(\sqrt x-\sqrt y).[(\sqrt x)^2 + \sqrt x.\sqrt y+(\sqrt y)^2+\sqrt{xy}]\)

\(=(\sqrt x-\sqrt y).[(\sqrt x)^2 + \sqrt x.\sqrt y+(\sqrt y)^2+\sqrt{x}.\sqrt{y}]\)

\(=(\sqrt x-\sqrt y).[(\sqrt x)^2 + 2\sqrt x.\sqrt y+(\sqrt y)^2]\)

\(=(\sqrt x-\sqrt y).(\sqrt x+\sqrt y)^2\).

 Cách 2: Nhóm các hạng tử:

\(\sqrt{x^{3}}-\sqrt{y^{3}}+\sqrt{x^{2}y}-\sqrt{xy^{2}}\)

\(=x\sqrt{x}-y\sqrt{y}+x\sqrt{y}-y\sqrt{x}\)

\(=(x\sqrt{x}+x\sqrt{y})-(y\sqrt{x}+y\sqrt{y})\)

\(=x(\sqrt{x}+\sqrt{y})-y(\sqrt{y}+\sqrt{x})\)

\(=(\sqrt{x}+\sqrt{y})(x-y)\)

\(=(\sqrt{x}+\sqrt{y})(\sqrt x+\sqrt y)(\sqrt x -\sqrt y)\)

\(=(\sqrt{x}+\sqrt{y})^2(\sqrt{x}-\sqrt{y})\).

Loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 9 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan