Lý thuyết quy đồng mẫu thức nhiều phân thức>
1. Tìm mẫu thức chung
1. Các kiến thức cần nhớ
Quy đồng mẫu thức
Định nghĩa: Quy đồng mẫu thức nhiều phân thức là biến đổi các phân thức đã cho thành những phân thức mới có cùng mẫu thức và lần lượt các phân thức đã cho.
Phương pháp quy đồng mẫu thức nhiều phân thức
* Tìm mẫu chung
+ Phân tích phần hệ số thành thừa số nguyên tố và phần biến thành nhân tử
+ Mẫu chung bao gồm: phần hệ số là BCNN của các hệ số của mẫu và phần biến là tích giữa các nhân tử chung và riêng mỗi nhân tử lấy số mũ lớn nhất.
* Tìm nhân tử phụ mỗi phân thức: Lấy mẫu chung chia cho từng mẫu (đã phân tích thành nhân tử).
* Nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng.
Ví dụ: Quy đồng mẫu thức các phân thức \(\dfrac{1}{{{x^3} + 1}};\dfrac{2}{{3x + 3}};\dfrac{x}{{2{x^2} - 2x + 2}}\)
Giải:
Ta có: \({x^3} + 1 = \left( {x + 1} \right)\left( {{x^2} - x + 1} \right)\); \(3x + 3 = 3\left( {x + 1} \right);\)\(2{x^2} - 2x + 2 = 2\left( {{x^2} - x + 1} \right)\) và BCNN\(\left( {2;3} \right) = 6\) nên các phân thức \(\dfrac{1}{{{x^3} + 1}};\dfrac{2}{{3x + 3}};\dfrac{x}{{2{x^2} - 2x + 2}}\) có mẫu chung là \(6\left( {x + 1} \right)\left( {{x^2} - x + 1} \right) = 6\left( {{x^3} + 1} \right).\)
* Nên nhân tử phụ của \(\dfrac{1}{{{x^3} + 1}}\) là \(6\) \( \Rightarrow \dfrac{1}{{{x^3} + 1}} = \dfrac{6}{{6\left( {{x^3} + 1} \right)}}\)
* Nhân tử phụ của \(\dfrac{2}{{3x + 3}}\) là \(2\left( {{x^2} - x + 1} \right)\) \( \Rightarrow \dfrac{2}{{3x + 3}} = \dfrac{{2.2\left( {{x^2} - x + 1} \right)}}{{3\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} = \dfrac{{4{x^2} - 4x + 4}}{{6\left( {{x^3} + 1} \right)}}.\)
* Nhân tử phụ của \(\dfrac{x}{{2{x^2} - 2x + 2}}\) là \(3\left( {x + 1} \right)\) \( \Rightarrow \dfrac{x}{{2{x^2} - 2x + 2}} = \dfrac{{x.3\left( {x + 1} \right)}}{{2\left( {{x^2} - x + 1} \right).3\left( {x + 1} \right)}} = \dfrac{{3{x^2} + 3x}}{{6\left( {{x^3} + 1} \right)}}.\)
Vậy ta được 3 phân thức sau khi qui đồng là:
\(\dfrac{6}{{6\left( {{x^3} + 1} \right)}};\dfrac{{4{x^2} - 4x + 4}}{{6\left( {{x^3} + 1} \right)}};\dfrac{{3{x^2} + 3x}}{{6\left( {{x^3} + 1} \right)}}\)
2. Các dạng toán thường gặp
Dạng 1: Tìm mẫu thức chung của các phân thức
Phương pháp:
Để quy đồng mẫu thức nhiều phân thức ta thực hiện các bước sau:
* Tìm mẫu chung
+ Phân tích phần hệ số thành thừa số nguyên tố và phần biến thành nhân tử
+ Mẫu chung bao gồm: phần hệ số là BCNN của các hệ số của mẫu và phần biến là tích giữa các nhân tử chung và riêng mỗi nhân tử lấy số mũ lớn nhất.
* Tìm nhân tử phụ mỗi phân thức: Lấy mẫu chung chia cho từng mẫu (đã phân tích thành nhân tử).
* Nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng.
- Trả lời câu hỏi 1 Bài 4 trang 41 SGK Toán 8 Tập 1
- Trả lời câu hỏi 2 Bài 4 trang 42 SGK Toán 8 Tập 1
- Trả lời câu hỏi 3 Bài 4 trang 43 SGK Toán 8 Tập 1
- Bài 14 trang 43 SGK Toán 8 tập 1
- Bài 15 trang 43 SGK Toán 8 tập 1
>> Xem thêm