Bài 20 trang 44 SGK Toán 8 tập 1


Cho hai phân thức: Không dùng cách phân tích các mẫu thức thành nhân tử

Đề bài

Cho hai phân thức:

\(\dfrac{1}{{{x^2} + 3x - 10}},\;\dfrac{x}{{{x^2} + 7x + 10}}\)

Không dùng cách phân tích các mẫu thức thành nhân tử, hãy chứng tỏ rằng có thể quy đồng mẫu thức hai phân thức này với mẫu thức chung là \({x^3} + 5{x^2} - 4x - 20\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Để chứng tỏ rằng có thể chọn đa thức  \({x^3} + 5{x^2} - 4x - 20\) làm mẫu thức chung ta chỉ cần chứng tỏ rằng nó chia hết cho mẫu thức của mỗi phân thức đã cho.

Lời giải chi tiết

Để chứng tỏ rằng có thể chọn đa thức  \({x^3} + 5{x^2} - 4x - 20\) làm mẫu thức chung, ta chỉ cần chứng tỏ rằng nó chia hết cho mẫu thức của mỗi phân thức đã cho.

Ta xét các phép chia:

Do đó:

\(\begin{array}{l}
{x^3} + 5{{\rm{x}}^2} - 4{\rm{x}} - 20\\
= \left( {{x^2} + 3{\rm{x}} - 10} \right)\left( {x + 2} \right)\\
= \left( {{x^2} + 7{\rm{x + }}10} \right)\left( {x - 2} \right)
\end{array}\)

+) MTC = \({x^3} + 5{x^2} - 4x - 20\)

Nhân tử phụ của phân số thứ nhất là: \((x+2)\)

Nhân tử phụ của phân số thứ hai là: \((x-2)\)

+) Quy đồng mẫu thức:

\(\dfrac{1}{{{x^2} + 3x - 10}} \)\(\,= \dfrac{{1.\left( {x + 2} \right)}}{{\left( {{x^2} + 3x - 10} \right)\left( {x + 2} \right)}}\)\(\,= \dfrac{{x + 2}}{{{x^3} + 5{x^2} - 4x - 20}}\)

\(\dfrac{x}{{{x^2} + 7x + 10}}\)\(\,= \dfrac{{x\left( {x - 2} \right)}}{{\left( {{x^2} + 7x + 10} \right)\left( {x - 2} \right)}}\)\(\,= \dfrac{{{x^2} - 2x}}{{{x^3} + 5{x^2} - 4x - 20}}\)


Bình chọn:
4.4 trên 96 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Xem ngay

Tham Gia Group Dành Cho 2K10 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 8 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.