Bài 20 trang 44 SGK Toán 8 tập 1

Bình chọn:
4.1 trên 31 phiếu

Giải bài 20 trang 44 SGK Toán 8 tập 1. Cho hai phân thức: Không dùng cách phân tích các mẫu thức thành nhân tử

Đề bài

Cho hai phân thức:

\(\dfrac{1}{{{x^2} + 3x - 10}},\;\dfrac{x}{{{x^2} + 7x + 10}}\)

Không dùng cách phân tích các mẫu thức thành nhân tử, hãy chứng tỏ rằng có thể quy đồng mẫu thức hai phân thức này với mẫu thức chung là

\({x^3} + 5{x^2} - 4x - 20\)

Phương pháp giải - Xem chi tiết

Để chứng tỏ rằng có thể chọn đa thức  \({x^3} + 5{x^2} - 4x - 20\) làm mẫu thức chung ta chỉ cần chứng tỏ rằng nó chia hết cho mẫu thức của mỗi phân thức đã cho.

Lời giải chi tiết

Ta có:

Do đó:

\(\begin{array}{l}
{x^3} + 5{{\rm{x}}^2} - 4{\rm{x}} - 20\\
= \left( {{x^2} + 3{\rm{x}} - 10} \right)\left( {x + 2} \right)\\
= \left( {{x^2} + 7{\rm{x + }}10} \right)\left( {x - 2} \right)
\end{array}\)

+) MTC = \({x^3} + 5{x^2} - 4x - 20\)

Nhân tử phụ của mẫu thứ nhất là: \((x+2)\)

Nhân tử phụ của mẫu thứ hai là: \((x-2)\)

+) Quy đồng mẫu thức:

\(\dfrac{1}{{{x^2} + 3x - 10}} \)\(\,= \dfrac{{1.\left( {x + 2} \right)}}{{\left( {{x^2} + 3x - 10} \right)\left( {x + 2} \right)}}\)\(\,= \dfrac{{x + 2}}{{{x^3} + 5{x^2} - 4x - 20}}\)

\(\dfrac{x}{{{x^2} + 7x + 10}}\)\(\,= \dfrac{{x\left( {x - 2} \right)}}{{\left( {{x^2} + 7x + 10} \right)\left( {x - 2} \right)}}\)\(\,= \dfrac{{{x^2} - 2x}}{{{x^3} + 5{x^2} - 4x - 20}}\)

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 8 - Xem ngay

>>Học trực tuyến lớp 8 trên Tuyensinh247.com mọi lúc, mọi nơi đầy đủ các môn: Toán, Văn, Anh, Lý, Hóa, Sử, Địa cùng các thầy cô giáo dạy giỏi, nổi tiếng.