Bài 16 trang 43 SGK Toán 8 tập 1

Bình chọn:
4.5 trên 128 phiếu

Giải bài 16 trang 43 SGK Toán 8 tập 1. Quy đồng mẫu thức các phân thức sau (có thể áp dụng quy tắc đổi dấu đối với một phân thức để tìm mẫu thức chung thuận tiện hơn):

Đề bài

Quy đồng mẫu thức các phân thức sau (có thể áp dụng quy tắc đổi dấu đối với một phân thức để tìm mẫu thức chung thuận tiện hơn):

a) \( \dfrac{4x^{2}-3x+5}{x^{3}-1},\dfrac{1-2x}{x^{2}+x+1},-2\),        

b) \( \dfrac{10}{x+2},\dfrac{5}{2x-4},\dfrac{1}{6-3x}\)

Phương pháp giải - Xem chi tiết

- Áp dụng quy tắc đổi dấu.

- Muốn quy đồng mẫu thức nhiều phân thức ta có thể làm như sau:

+ Phân tích các mẫu thức thành nhân tử rồi tìm mẫu thức chung.

+ Tìm nhân tử phụ của mỗi mẫu thức.

+ Nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng.

Lời giải chi tiết

a) Tìm mẫu thức chung:

\({x^3} - 1 = \left( {x - 1} \right)({x^2} + {\rm{ }}x + 1)\)

Nên mẫu thức chung là: \(\left( {x - 1} \right)({x^2} + {\rm{ }}x + 1)\)

Nhân tử phụ thứ nhất là \(1\)

Nhân tử phụ thứ hai là \((x-1)\)

Nhân tử phụ thứ ba là \(\left( {x - 1} \right)({x^2} + {\rm{ }}x + 1)\)

Quy đồng:

\( \dfrac{4x^{2}-3x+5}{x^{3}-1}=\dfrac{4x^{2}-3x+5}{(x-1)(x^{2}+x+1)}\)

\( \dfrac{1-2x}{x^{2}+x+1}=\dfrac{(x-1)(1-2x)}{(x-1)(x^{2}+x+1)}\)

\(-2 =  \dfrac{-2(x^{3}-1)}{(x-1)(x^{2}+x+1)}\)

b) Tìm mẫu thức chung:

\(x+ 2\)

\(2x - 4 = 2(x - 2)\)

\(6 - 3x = 3(2 - x) = -3(x -2)\)

Mẫu thức chung là: \(6(x - 2)(x + 2)\)

Nhân tử phụ thứ nhất là \(6(x-2)\)

Nhân tử phụ thứ hai là \(3(x+2)\)

Nhân tử phụ thứ ba là \(-2(x+2)\)

Quy đồng:

\( \dfrac{10}{x+2}= \dfrac{10.6.(x-2)}{6(x-2)(x+2)}\)\(\,=\dfrac{60(x-2)}{6(x-2)(x+2)}\)

\( \dfrac{5}{2x-4}=\dfrac{5}{x(x-2)}\)\(\,=\dfrac{5.3(x+2)}{2(x-2).3(x+2)}\)\(=\dfrac{15(x+2)}{6(x-2)(x+2)}\)

\( \dfrac{1}{6-3x}=\dfrac{1}{-3(x-2)}\)\(\,=\dfrac{-2(x+2)}{-3(x-2).(-2(x+2))}\)\(=\dfrac{-2(x+2)}{6(x-2)(x+2)}\)

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 8 - Xem ngay

>>Học trực tuyến lớp 8 trên Tuyensinh247.com mọi lúc, mọi nơi đầy đủ các môn: Toán, Văn, Anh, Lý, Hóa, Sử, Địa cùng các thầy cô giáo dạy giỏi, nổi tiếng.