Bài 92 trang 121 SBT toán 9 tập 1


Giải bài 92 trang 121 sách bài tập toán 9. Cho tam giác cân ABC, AB = AC = 10cm, BC = 16cm. Trên đường cao AH lấy điểm I sao cho AI = 1/3AH. Vẽ tia Cx song song với AH, Cx cắt tia BI tại D...

Đề bài

Cho tam giác cân \(ABC\), \(AB = AC = 10cm\), \(BC = 16cm\). Trên đường cao \(AH\) lấy điểm \(I\) sao cho \(AI = \displaystyle {1 \over 3}AH.\) Vẽ tia \(Cx\) song song với \(AH\), \(Cx\) cắt tia \(BI\) tại \(D\).

a) Tính các góc của tam giác \(ABC\).

b) Tính diện tích tứ giác \(ABCD\).

Phương pháp giải - Xem chi tiết

a) Áp dụng tỉ số lượng giác của góc nhọn và định lí Py-ta-go vào các tam giác vuông.

b) Áp dụng định lí Py-ta-go và kiến thức về đường trung bình của tam giác.

Lời giải chi tiết

a) Vì tam giác ABC cân tại A có \(AH \bot BC\) nên AH cũng là đường trung tuyến, suy ra: \(HB = HC =\displaystyle {{BC} \over 2} = 8\,(cm)\)

Trong tam giác vuông \(ABH\), ta có: 

\(\cos \widehat B = \displaystyle {{HB} \over {AB}} = {8 \over {10}} = 0,8\)

Suy ra: \(\widehat B \approx 36^\circ 52'\)

Vì \(∆ABC\) cân nên \(\widehat B = \widehat C = 36^\circ 52'\)

Ta có: \(\widehat A + \widehat B + \widehat C= 180^\circ  \) (tổng 3 góc trong tam giác ABC)

\(\widehat A = 180^\circ  - (\widehat B + \widehat C) \)\(= 180^\circ  - (36^\circ 52' + 36^\circ 52') = 106^\circ 16'\)

b) Áp dụng định lí Pi-ta-go vào tam giác vuông ABH, ta có:

\(\eqalign{
 A{B^2} = A{H^2} + B{H^2} \cr 
 \Rightarrow A{H^2} = A{B^2} - B{H^2}\cr = {10^2} - {8^2} = 36 \cr} \)

Suy ra: \(AH = 6 (cm)\)

Ta có: \(AI = \displaystyle {1 \over 3}.AH = {1 \over 3}.6 = 2\,(cm)\)

Suy ra: \(IH = AH - AI = 6 - 2 = 4 (cm)\)

Vì \(IH \bot BC\) và \(DC \bot BC\) nên \(IH // DC\) (1)

Mặt khác: \(BH = HC\) (cmt)  (2)

Từ (1) và (2) ta có \(IH\) là đường trung bình của tam giác \(BCD\).

Suy ra: \(IH =\displaystyle {1 \over 2}CD\) hay \(CD = 2.IH\)\( = 2.4 = 8 (cm)\)

Ta có:  

\({S_{ABH}} = \displaystyle {1 \over 2}AH.BH = {1 \over 2}.6.8\)\( = 24\,\,\left( {c{m^2}} \right)\)

Vì \(AH//DC\) nên AHCD là hình thang và \(AH\bot HC\) nên HC là chiều cao của hình thang AHCD. Từ đó: 

\({S_{AHCD}} = \displaystyle {{AH + CD} \over 2}.HC = {{6 + 8} \over 2}.8\)\( = 56\,\left( {c{m^2}} \right)\)

Vậy \({S_{ABCD}} = S{  _{ABH}} + {S_{AHCD}} = 24 + 56\)\( = 80\,\) (cm2)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.5 trên 19 phiếu

>> Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài