

Bài 1.3 phần bài tập bổ sung trang 123 SBT toán 9 tập 1>
Giải bài 1.3 phần bài tập bổ sung trang 123 sách bài tập toán 9. Cho tam giác ABC cân tại A, đường cao BH. Hãy tính góc A và các cạnh AB, BC, nếu biết BH = h và góc C = a ...
GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT
Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn
Đề bài
Cho tam giác \(ABC\) cân tại \(A\), đường cao \(BH\). Hãy tính góc \(A\) và các cạnh \(AB, BC\), nếu biết \(BH = h\) và \(\widehat C = \alpha .\)
Phương pháp giải - Xem chi tiết
Vận dụng kiến thức về tỉ số lượng giác trong tam giác vuông.
Lời giải chi tiết
Vì tam giác ABC cân tại A nên \(\widehat B = \widehat C = \alpha \)
Ta có: \(\widehat A + \widehat B + \widehat C = {180^0}\) (định lý tổng ba góc trong tam giác)
\( \Rightarrow \widehat A = {180^0} - \left( {\widehat B + \widehat C} \right)\) \( \Rightarrow \widehat A = 180^\circ - 2\alpha .\)
Tam giác vuông \(HBC\) có \(BC = \dfrac{{BH}}{{\sin \widehat C}}= \displaystyle {h \over {\sin \alpha }}\).
Kẻ đường cao \(AI\) của tam giác cân \(ABC\) thì AI cũng là đường trung tuyến nên \(BI = IC = \dfrac{{BC}}{2}\)
Xét tam giác ACI vuông tại I, có: \(AC = \displaystyle {{IC} \over {\cos \alpha }} = { \displaystyle {{{BC} \over 2}} \over {{\rm{cos}}\alpha }}\)\( = \displaystyle {h \over {2\sin \alpha \cos \alpha }}.\)
Vậy \(AB = AC =\) \(\displaystyle {h \over {2\sin \alpha \cos \alpha }}.\)
Loigiaihay.com


- Bài 1.4 phần bài tập bổ sung trang 123 SBT toán 9 tập 1
- Bài 1.5 phần bài tập bổ sung trang 123 SBT toán 9 tập 1
- Bài 1.2 phần bài tập bổ sung trang 123 SBT toán 9 tập 1
- Bài 1.1 phần bài tập bổ sung trang 123 SBT toán 9 tập 1
- Bài 99 trang 122 SBT toán 9 tập 1
>> Xem thêm