Bài 1.2 phần bài tập bổ sung trang 123 SBT toán 9 tập 1


Giải 1.2 phần bài tập bổ sung trang 123 sách bài tập toán 9. Cho hình vuông ABCD có cạnh bằng 2a. Gọi M, N lần lượt là trung điểm của BC, CD. Tính cos MAN...

Đề bài

Cho hình vuông \(ABCD\) có cạnh bằng \(2a\). Gọi \(M, N\) lần lượt là trung điểm của \(BC, CD\). Tính  \(cos\;\widehat {MAN}\)

Phương pháp giải - Xem chi tiết

Vận dụng kiến thức về tỉ số lượng giác và công thức tính diện tích tam giác.

Lời giải chi tiết

Vì \(M,N\) lần lượt là trung điểm của BC và DC nên \(BM=MC=DN=NC\)\(=2a:2=a\)

Xét tam giác vuông ADN, theo định lý Pytago ta có: 

\(A{N^2} = A{D^2} + D{N^2} \)\(= {\left( {2a} \right)^2} + {a^2} = 5{a^2}\)

\( \Rightarrow AN = a\sqrt 5 \)

Xét tam giác vuông ABM, theo định lý Pytago ta có: 

\(A{M^2} = A{B^2} + B{M^2} \)\(= {\left( {2a} \right)^2} + {a^2} = 5{a^2}\)

\( \Rightarrow AM = a\sqrt 5 \)

Kẻ đường cao \(MH\) của tam giác \(AMN\). Ta có \(\sin \widehat {NAM} = \displaystyle {{HM} \over {AM}}\) \( \Rightarrow HM = AM.\sin \widehat {NAM}\) và diện tích tam giác \(AMN\) là:

\({S_{AMN}} = \displaystyle {1 \over 2}AN.MH\)\( = \displaystyle {1 \over 2}AN.AM\sin \widehat {NAM} \) 
\(= \displaystyle {1 \over 2}.a\sqrt 5.a\sqrt 5.\sin \widehat {NAM} \)\( = \displaystyle {{5{a^2}} \over 2}\sin \widehat {NAM}.\)

Mặt khác:

\({S_{AMN}} = {S_{ABCD}} - {S_{ABM}} - {S_{ADN}}\)\( - {S_{MNC}} \)

\( = {\left( {AB} \right)^2} - \dfrac{1}{2}.AB.BM - \dfrac{1}{2}AD.DN - \dfrac{1}{2}MC.NC\)

\( = {\left( {2a} \right)^2} - \dfrac{1}{2}.2a.a - \dfrac{1}{2}.2a.a - \dfrac{1}{2}a.a\)
\(= 4{a^2} - {a^2}-a^2 - \displaystyle {{{a^2}} \over 2}\)\( =\displaystyle { {3{a^2}} \over 2}. \)

Từ đó: 

\(\begin{array}{l}
{S_{AMN}} = \dfrac{{5{a^2}}}{2}\sin \widehat {NAM} = \dfrac{{3{a^2}}}{2}\\
\Rightarrow \sin \widehat {NAM} = \dfrac{{\dfrac{{3{a^2}}}{2}}}{{\dfrac{{5{a^2}}}{2}}} = \dfrac{3}{5}
\end{array}\)

Vì \({\sin ^2}\widehat {NAM} + {\cos ^2}\widehat {NAM} = 1\) nên:

\(\cos \widehat {NAM} = \sqrt {1 - {{\sin }^2}\widehat {NAM}}\)\(  = \sqrt {1 - \displaystyle {9 \over {25}}}  = \displaystyle {4 \over 5}.\)

Loigiaihay.com


Bình chọn:
4 trên 9 phiếu
  • Bài 1.3 phần bài tập bổ sung trang 123 SBT toán 9 tập 1

    Giải bài 1.3 phần bài tập bổ sung trang 123 sách bài tập toán 9. Cho tam giác ABC cân tại A, đường cao BH. Hãy tính góc A và các cạnh AB, BC, nếu biết BH = h và góc C = a ...

  • Bài 1.4 phần bài tập bổ sung trang 123 SBT toán 9 tập 1

    Giải bài 1.4 phần bài tập bổ sung trang 123 sách bài tập toán 9. Cho hình bình hành ABCD có góc A bằng 120 độ, AB = a, BC = b. Các đường phân giác của bốn góc A, B, C, D cắt nhau tạo thành tứ giác MNPQ...

  • Bài 1.5 phần bài tập bổ sung trang 123 SBT toán 9 tập 1

    Giải bài 1.5 phần bài tập bổ sung trang 123 sách bài tập toán 9. Cho tam giác ABC vuông tại C có góc B bằng 37 độ. Gọi I là giao điểm của cạnh BC với đường trung trực của AB...

  • Bài 1.1 phần bài tập bổ sung trang 123 SBT toán 9 tập 1

    Giải bài 1.1 phần bài tập bổ sung trang 123 sách bài tập toán 9. Tam giác ABC có góc A bằng 105 độ, góc B bằng 45 độ, BC = 4cm. Tính độ dài các cạnh AB, AC...

  • Bài 99 trang 122 SBT toán 9 tập 1

    Giải bài 99 trang 122 sách bài tập toán 9. Gọi AM, BN, CL là ba đường cao của tam giác ABC. Chứng minh: a) ∆ANL đồng dạng ∆ABC; b) AN.BL.CM = AB.BC.CA.cosA.cosB.cosC...

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Xem ngay

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí