Đề kiểm tra 15 phút - Đề số 3 - Bài 1 - Chương 1 - Hình học 8


Giải Đề kiểm tra 15 phút - Đề số 3 - Bài 1 - Chương 1 - Hình học 8

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Đề bài

Các đường phân giác trong của tứ giác ABCD tạo thành một tứ giác. Chứng minh rằng tứ giác đó có các góc đối bù nhau.

Phương pháp giải - Xem chi tiết

Sử dụng:

Tổng bốn góc trong tứ giác bằng \(360^0\)

Tổng ba góc trong tam giác bằng \(180^0\)

Lời giải chi tiết

Gọi MNPQ là tứ giác được tạo thành.

Xét tứ giác ABCD, ta có :

\(\widehat A + \widehat B + \widehat C + \widehat D = {360^ \circ }\) (tổng bốn góc trong tứ giác bằng \(360^0\))

\( \Rightarrow {{\widehat A} \over 2} + {{\widehat B} \over 2} + {{\widehat C} \over 2} + {{\widehat D} \over 2} = {180^ \circ }.\)

Xét \(\Delta AMB\) có \(\widehat {{A_1}} + \widehat {AMB} + \widehat {{B_1}} = {180^ \circ }\)

Hay \({{\widehat A} \over 2} + \widehat {AMB} + {{\widehat B} \over 2} = {180^ \circ }.\)

Tương tự với \(\Delta CPD:{{\widehat C} \over 2} + \widehat {CPD} + {{\widehat D} \over 2} = {180^ \circ }.\)

\( \Rightarrow {{\widehat A} \over 2} + \widehat {AMB} + {{\widehat B} \over 2} \)\(+{{\widehat C} \over 2} + \widehat {CPD} + {{\widehat D} \over 2}=180^0+180^0\)

\( \Rightarrow \widehat {AMB} + \widehat {CPD}\)\(+{{\widehat A} \over 2} + {{\widehat B} \over 2} + {{\widehat C} \over 2} + {{\widehat D} \over 2}=360^0\)

\( \Rightarrow \widehat {AMB} + \widehat {CPD} = {180^ \circ }\)

\(\Rightarrow \widehat {NMQ} + \widehat {NPQ} = {180^ \circ }\)

\( \Rightarrow \widehat {MNP} + \widehat {MQP} \)\(\,= {360^ \circ } - \left( {\widehat {NMQ} + \widehat {NPQ}} \right)\)\(\, = {360^ \circ } - {180^ \circ } = {180^ \circ }.\)

Vậy tứ giác MNPQ có các góc đối bù nhau.

Loigiaihay.com


Bình chọn:
4 trên 19 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Xem ngay

Tham Gia Group Dành Cho Lớp 8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí