Bài 73 trang 32 SGK Toán 8 tập 1>
Tính nhanh:
Video hướng dẫn giải
Tính nhanh:
LG a.
\((4{x^2}-{\rm{ }}9{y^2}){\rm{ }}:{\rm{ }}\left( {2x{\rm{ }}-{\rm{ }}3y} \right)\);
Phương pháp giải:
Áp dụng hằng đẳng thức đáng nhớ để phân tích đa thức bị chia thành nhân tử, sau đó thực hiện phép chia.
Lời giải chi tiết:
\((4{x^2}-{\rm{ }}9{y^2}){\rm{ }}:{\rm{ }}\left( {2x{\rm{ }}-{\rm{ }}3y} \right) \)
\(= \left[ {{{(2x)}^2} - {{(3y)}^2}} \right]:(2x - 3y)\)
\(= (2x - 3y).(2x + 3y):(2x - 3y) \)
\(= 2x + 3y\);
LG b.
\((27{x^3}-{\rm{ }}1){\rm{ }}:{\rm{ }}\left( {3x{\rm{ }}-{\rm{ }}1} \right)\);
Phương pháp giải:
Áp dụng hằng đẳng thức đáng nhớ để phân tích đa thức bị chia thành nhân tử, sau đó thực hiện phép chia.
Lời giải chi tiết:
\((27{x^3}-{\rm{ }}1){\rm{ }}:{\rm{ }}\left( {3x{\rm{ }}-{\rm{ }}1} \right) \)
\(=\left[ {{{(3x)}^3} - {1^3}} \right]:(3x - 1)\)
\(= (3x - 1).\left[ {{{(3x)}^2} + 3x.1 + 1^2} \right]:(3x - 1) \)
\(= (3x - 1).\left( 9x^2+ 3x + 1\right):(3x - 1) \)
\(= 9{x^2} + 3x + 1\)
LG c.
\((8{x^3} + {\rm{ }}1){\rm{ }}:{\rm{ }}(4{x^2}-{\rm{ }}2x{\rm{ }} + {\rm{ }}1)\);
Phương pháp giải:
Áp dụng hằng đẳng thức đáng nhớ để phân tích đa thức bị chia thành nhân tử, sau đó thực hiện phép chia.
Lời giải chi tiết:
\((8{x^3} + {\rm{ }}1){\rm{ }}:{\rm{ }}(4{x^2}-{\rm{ }}2x{\rm{ }} + {\rm{ }}1){\rm{ }}\)
\(= \left[ {{{(2x)}^3} + {1^3}} \right]:{\rm{ }}(4{x^2}-{\rm{ }}2x{\rm{ }} + {\rm{ }}1)\)
\(= {\rm{ }}\left( {2x{\rm{ }} + {\rm{ }}1} \right)\left[ {{{(2x)}^2} - 2x.1 + 1^2} \right]{\rm{ }}:{\rm{ }}(4{x^2}-{\rm{ }}2x{\rm{ }} + {\rm{ }}1)\)
\( = \left( {2x{\rm{ }} + {\rm{ }}1} \right)(4{x^2}-{\rm{ }}2x{\rm{ }} + {\rm{ }}1):(4{x^2}-{\rm{ }}2x{\rm{ }} + {\rm{ }}1){\rm{ }} \)
\(= {\rm{ }}2x{\rm{ }} + {\rm{ }}1\)
LG d.
\(({x^2}-{\rm{ }}3x{\rm{ }} + {\rm{ }}xy{\rm{ }} - 3y){\rm{ }}:{\rm{ }}\left( {x{\rm{ }} + {\rm{ }}y} \right)\)
Phương pháp giải:
Áp dụng phương pháp nhóm hạng tử để phân tích đa thức bị chia thành nhân tử, sau đó thực hiện phép chia.
Lời giải chi tiết:
\(({x^2}-{\rm{ }}3x{\rm{ }} + {\rm{ }}xy{\rm{ }} - 3y){\rm{ }}:{\rm{ }}\left( {x{\rm{ }} + {\rm{ }}y} \right)\)
\(\eqalign{
& = \left[ {({x^2} + xy) - (3x + 3y)} \right]:(x + y) \cr
& = \left[ {x(x + y) - 3(x + y)} \right]:(x + y) \cr
& = (x + y)(x - 3):(x + y) \cr
& = x - 3 \cr
& \cr} \)
Loigiaihay.com
- Bài 74 trang 32 SGK Toán 8 tập 1
- Đề kiểm tra 15 phút - Đề số 1 - Bài 12 - Chương 1 - Đại số 8
- Đề kiểm tra 15 phút - Đề số 2 - Bài 12 - Chương 1 - Đại số 8
- Đề kiểm tra 15 phút - Đề số 3 - Bài 12 - Chương 1 - Đại số 8
- Đề kiểm tra 15 phút - Đề số 4 - Bài 12 - Chương 1 - Đại số 8
>> Xem thêm