Bài 68 trang 31 SGK Toán 8 tập 1

Bình chọn:
4.9 trên 79 phiếu

Giải bài 68 trang 31 SGK Toán 8 tập 1. Áp dụng hằng đẳng thức đáng nhớ

Đề bài

Áp dụng hằng đẳng thức đáng nhớ để thực hiện phép chia:

a) \(({x^2} + {\rm{ }}2xy{\rm{ }} + {\rm{ }}{y^2}):\left( {x{\rm{ }} + {\rm{ }}y} \right)\);      

b) \((125{x^3} + {\rm{ }}1){\rm{ }}:{\rm{ }}\left( {5x{\rm{ }} + {\rm{ }}1} \right)\);

c) \(({x^2}-{\rm{ }}2xy{\rm{ }} + {\rm{ }}{y^2}):\left( {y{\rm{ }}-{\rm{ }}x} \right)\).

Phương pháp giải - Xem chi tiết

- Áp dụng hằng đẳng thức đáng nhớ phân tích đa thức bị chia thành nhân tử, sau đó rút gọn.

Lời giải chi tiết

a) \(({x^2} + {\rm{ }}2xy{\rm{ }} + {\rm{ }}{y^2}):\left( {x{\rm{ }} + {\rm{ }}y} \right)\)

\(= {\left( {x{\rm{ }} + {\rm{ }}y} \right)^2}:\left( {x{\rm{ }} + {\rm{ }}y} \right) \)

\(= x{\rm{ }} + {\rm{ }}y\).

b) \((125{x^3} + {\rm{ }}1){\rm{ }}:{\rm{ }}\left( {5x{\rm{ }} + {\rm{ }}1} \right){\rm{ }} \)

\(= {\rm{ }}[{\left( {5x} \right)^3} + 1^3]{\rm{ }}:{\rm{ }}\left( {5x{\rm{ }} + {\rm{ }}1} \right)\)

\({\rm{ = [(}}5x + 1)({(5x)^2} - 5x.1 + {1^2}){\rm{]}}\)\(:(5x + 1)\)

\(= 25{x^2} - 5x + 1\)

c) \(({x^2}-{\rm{ }}2xy{\rm{ }} + {\rm{ }}{y^2}){\rm{ }}:{\rm{ }}\left( {y{\rm{ }}-{\rm{ }}x} \right){\rm{ }}\)

\(= {\rm{ }}{\left( {x{\rm{ }}-{\rm{ }}y} \right)^2}:{\rm{ }}\left[ { - \left( {x{\rm{ }}-{\rm{ }}y} \right)} \right]{\rm{ }}\)

\(= {\rm{ }} - {\rm{ }}\left( {x{\rm{ }}-{\rm{ }}y} \right){\rm{ }} = {\rm{ }}y{\rm{ }}-{\rm{ }}x\)

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 8 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến các môn học lớp 8, mọi lúc, mọi nơi môn Toán, Văn, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan