Bài 68 trang 31 SGK Toán 8 tập 1


Áp dụng hằng đẳng thức đáng nhớ

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Áp dụng hằng đẳng thức đáng nhớ để thực hiện phép chia:

LG a.

\(({x^2} + {\rm{ }}2xy{\rm{ }} + {\rm{ }}{y^2}):\left( {x{\rm{ }} + {\rm{ }}y} \right)\);

Phương pháp giải:

- Áp dụng hằng đẳng thức đáng nhớ phân tích đa thức bị chia thành nhân tử, sau đó thực hiện phép chia.

- Áp dụng hằng đẳng thức

\({\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\)

Lời giải chi tiết:

 \(({x^2} + {\rm{ }}2xy{\rm{ }} + {\rm{ }}{y^2}):\left( {x{\rm{ }} + {\rm{ }}y} \right)\)

\(= {\left( {x{\rm{ }} + {\rm{ }}y} \right)^2}:\left( {x{\rm{ }} + {\rm{ }}y} \right) \)

\(= x{\rm{ }} + {\rm{ }}y\).

LG b.

\((125{x^3} + {\rm{ }}1){\rm{ }}:{\rm{ }}\left( {5x{\rm{ }} + {\rm{ }}1} \right)\);

Phương pháp giải:

- Áp dụng hằng đẳng thức đáng nhớ phân tích đa thức bị chia thành nhân tử, sau đó thực hiện phép chia.

- Áp dụng hằng đẳng thức

\({A^3} + {B^3} = \left( {A + B} \right)({A^2} - AB + {B^2})\)

Lời giải chi tiết:

\((125{x^3} + {\rm{ }}1){\rm{ }}:{\rm{ }}\left( {5x{\rm{ }} + {\rm{ }}1} \right){\rm{ }} \)

\(= {\rm{ }}[{\left( {5x} \right)^3} + 1^3]{\rm{ }}:{\rm{ }}\left( {5x{\rm{ }} + {\rm{ }}1} \right)\)

\( = (5x + 1)[{(5x)^2} - 5x.1 + {1^2}]:(5x + 1)\)

\( = (5x + 1)(25{x^2} - 5x + 1):(5x + 1)\)

\(= 25{x^2} - 5x + 1\)

LG c.

\(({x^2}-{\rm{ }}2xy{\rm{ }} + {\rm{ }}{y^2}):\left( {y{\rm{ }}-{\rm{ }}x} \right)\).

Phương pháp giải:

- Áp dụng hằng đẳng thức đáng nhớ phân tích đa thức bị chia thành nhân tử, sau đó thực hiện phép chia.

- Áp dụng hằng đẳng thức

\({\left( {A - B} \right)^2} = {A^2} - 2AB + {B^2}\)

Lời giải chi tiết:

\(({x^2}-{\rm{ }}2xy{\rm{ }} + {\rm{ }}{y^2}){\rm{ }}:{\rm{ }}\left( {y{\rm{ }}-{\rm{ }}x} \right){\rm{ }}\) 

\(= {\rm{ }}{\left( {x{\rm{ }}-{\rm{ }}y} \right)^2}:{\rm{ }}\left[ { - \left( {x{\rm{ }}-{\rm{ }}y} \right)} \right]{\rm{ }}\)

\(= {\rm{ }} - {\rm{ }}\left( {x{\rm{ }}-{\rm{ }}y} \right){\rm{ }} = {\rm{ }}y{\rm{ }}-{\rm{ }}x\)

Hoặc ta làm như sau:

\(\begin{array}{l}
\left( {{x^2} - 2xy + {y^2}} \right):\left( {y - x} \right)\\
= \left( {{y^2} - 2xy + {x^2}} \right):\left( {y - x} \right)\\
= {\left( {y - x} \right)^2}:\left( {y - x} \right)\\
= y - x
\end{array}\)

Loigiaihay.com


Bình chọn:
4.4 trên 289 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Xem ngay

Tham Gia Group Dành Cho Lớp 8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí