
Đề bài
Cho tam giác đều \(ABC\), \(O\) là trung điểm của \(BC\). Trên các cạnh \(AB, AC\) lần lượt lấy các điểm di động \(D\) và \(E\) sao cho góc \(\widehat {DOE} = {60^0}\).
a) Chứng minh tích \(BD.CE\) không đổi.
b) Chứng minh \(ΔBOD\) đồng dạng \(ΔOED\). Từ đó suy ra tia \(DO\) là tia phân giác của góc \(BDE\).
c) Vẽ đường tròn tâm \(O\) tiếp xúc với \(AB\). Chứng minh rằng đường tròn này luôn tiếp xúc với \(DE\).
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
+) Chứng minh các cặp tam giác bằng nhau suy ra các cạnh tương ứng bằng nhau.
+) Chứng minh các cặp tam giác đồng dạng suy ra các cặp cạnh tương ứng tỉ lệ.
Lời giải chi tiết
a) Chứng minh tích \(BD.CE\) không đổi.
Ta có \(\widehat {DOC}\) là góc ngoài của \(∆ BDO\) nên: \(\widehat {DOC} = \widehat B + {\widehat D_1}\)
hay \(\widehat {{O_1}} + \widehat {{O_2}} = \widehat B + \widehat {{D_1}} \Leftrightarrow {60^0} + \widehat {{O_2}} = {60^0} + \widehat {{D_1}}\)
\(\Leftrightarrow \widehat {{O_2}} = \widehat {{D_1}}\)
Xét hai tam giác: \(∆BOD\) và \(∆CEO\), ta có: \(\widehat B = \widehat C = {60^0}\) (gt) và \(\widehat {{O_2}} = \widehat {{D_1}}\) (cmt)
\(⇒ ∆BOD \backsim ∆CEO\) (g.g)
\( \displaystyle \Rightarrow {{B{\rm{D}}} \over {BO}} = {{CO} \over {CE}}\) (cặp cạnh tương ứng tỉ lệ) \(\Rightarrow B{\rm{D}}.CE = BO.CO\)
hay \(\displaystyle B{\rm{D}}.CE = {{BC} \over 2}.{{BC} \over 2} = {{B{C^2}} \over 4}\) (không đổi)
Vậy \(\displaystyle B{\rm{D}}.CE = {{B{C^2}} \over 4}\) không đổi
b) Chứng minh \(ΔBOD \backsim ΔOED\)
Từ câu (a) ta có: \(∆BOD \backsim ∆CEO\)
\( \displaystyle \Rightarrow {{O{\rm{D}}} \over {OE}} = {{B{\rm{D}}} \over {OC}}\) ( cặp cạnh tương ứng tỉ lệ)
Mà \(OC = OB\)) nên \( \displaystyle{{O{\rm{D}}} \over {OE}} = {{B{\rm{D}}} \over {OB}}\)
Mà \(\widehat B = \widehat {DOE} = {60^0}\)
Vậy \(ΔBOD \backsim ΔOED\) (c.g.c) \(\Rightarrow \widehat {B{\rm{D}}O} = \widehat {O{\rm{D}}E}\) ( 2 góc tương ứng)
hay \(DO\) là tia phân giác của góc \(BDE\)
c) Vẽ \(OK \bot DE\) và gọi \(I\) là tiếp điểm của \((O)\) với \(AB\), khi đó \(OI \bot AB\). Xét hai tam giác vuông: \(IDO\) và \(KDO\), ta có:
\(DO\) chung
\(\widehat {{D_1}} = \widehat {{D_2}}\) (do \(DO\) là tia phân giác của góc \(BDE\))
Vậy \(ΔIDO= ΔKDO\) ( cạnh huyền - góc nhọn) \( ⇒ OI = OK\) (các cạnh tương ứng).
Điều này chứng tỏ rằng \(OK\) là bán kính của \((O)\) và \(OK \bot DE\) nên \(K\) là tiếp điểm của \(DE\) với \((O)\) hay \(DE\) tiếp xúc với đường tròn \((O).\)
Cho hai đường tròn (O; R) và (O'; r) tiếp xúc ngoài (R > r).
Giải bài 9 trang 135 SGK Toán 9 tập 2. Cho tam giác ABC nội tiếp đường tròn (O') và ngoại tiếp đường tròn (O). Tia AO cắt đường tròn (O') tại D. Ta có:
Cho tam giác nhọn ABC nội tiếp đường tròn(O). Các cung nhỏ AB, BC, CA có số đo lần lượt là x + 75o, 2x + 25o, 3x - 22o. Một góc của tam giác ABC có số đo là:
Giải bài 11 trang 135 SGK Toán 9 tập 2. Từ một điểm P ở ngoài đường tròn (O), kẻ cát tuyến PAB và PCD tới đường tròn. Gọi Q là một điểm nằm trên cung nhỏ BD (không chứa A và C) sao cho sđ cung BQ = 42° và sđ cung QD = 38°. Tính tổng
Một hình vuông và một hình tròn có chu vi bằng nhau. Hỏi hình nào có diện tích lớn hơn?
Cho đường tròn (O), cung BC có số đo bằng 120o, điểm A di chuyển trên cung lớn BC. Trên tia đối tia AB lấy điểm D sao cho AD = AC.
Giải bài 14 trang 135 SGK Toán 9 tập 2. Dựng tam giác ABC, biết BC = 4cm, góc A = 60o, bán kính đường tròn nội tiếp tam giác bằng 1cm.
Tam giác ABC cân tại A có cạnh đáy nhỏ hơn cạnh bên, nội tiếp đường tròn (O).Tiếp tuyến tại B và C của đường tròn lần lượt cắt tia AC và tia AB ở D và E.
Một mặt phẳng chứa trụ OO' của một hình trụ; phần mặt phẳng nằm trong hình trụ là một hình chữ nhật có chiều dài 3cm, chiều rộng 2cm.Tính diện tích xung quanh và thể tích hình trụ đó.
Giải bài 17 trang 135 SGK Toán 9 tập 2. Khi quay tam giác ABC vuông ở A một vòng quanh cạnh góc vuông AC cố định, ta được một hình nón. Biết rằng BC = 4dm, góc ACB = 30o. Tính diện tích xung quanh và thể tích hình nón.
Giải bài 18 trang 135 SGK Toán 9 tập 2. Một hình cầu có số đo diện tích (đơn vị: m2) bằng số đo thể tích (đơn vị: m3).
Giải bài 6 trang 134 SGK Toán 9 tập 2. Một hình chữ nhật cắt đường tròn như hình 121 biết AB = 4, BC = 5, DE = 3 (với cùng đơn vị đo).
Tam giác ABC vuông tại C có AC = 15cm. Đường cao CH chia AB thành hai đoạn AH và HB. Biết HB = 16cm. Tính diện tích tam giác ABC.
Giải bài 4 trang 134 SGK Toán 9 tập 2. Hãy chọn câu trả lời đúng.
Giải bài 3 trang 134 SGK Toán 9 tập 2. Cho tam giác ABC vuông ở C có đường trung tuyến BN vuông góc với đường trung tuyến CM, cạnh BC = a. Tính độ dài đường trung tuyến BN.
Tam giác ABC có góc B = 45o, góc C = 30o. Nếu AC = 8 thì AB bằng:
Chu vi hình chữ nhật ABCD là 20cm. Hãy tìm giá trị nhỏ nhất của độ dài đường chéo AC.
>> Xem thêm
Các bài khác cùng chuyên mục
Cảm ơn bạn đã sử dụng Loigiaihay.com. Đội ngũ giáo viên cần cải thiện điều gì để bạn cho bài viết này 5* vậy?
Vui lòng để lại thông tin để ad có thể liên hệ với em nhé!
Họ và tên:
Email / SĐT: