Bài 7 trang 134 SGK Toán 9 tập 2

Bình chọn:
4.1 trên 12 phiếu

Giải bài 7 trang 134 SGK Toán 9 tập 2. Cho tam giác đều ABC, O là trung điểm của BC. Trên các cạnh AB, AC lần lượt lấy các điểm di động D và E sao cho góc DOE = 60o.

Đề bài

Cho tam giác đều \(ABC\), \(O\) là trung điểm của \(BC\). Trên các cạnh \(AB, AC\) lần lượt lấy các điểm di động \(D\) và \(E\) sao cho góc \(\widehat {DOE} = {60^0}\).

a) Chứng minh tích \(BD.CE\) không đổi.

b) Chứng minh \(ΔBOD\) đồng dạng \(ΔOED\). Từ đó suy ra tia \(DO\) là tia phân giác của góc \(BDE\). 

c) Vẽ đường tròn tâm \(O\) tiếp xúc với \(AB\). Chứng minh rằng đường tròn này luôn tiếp xúc với \(DE\).

Phương pháp giải - Xem chi tiết

+) Chứng minh các cặp tam giác bằng nhau suy ra các cạnh tương ứng bằng nhau.

+) Chứng minh các cặp tam giác đồng dạng suy ra các cặp cạnh tương ứng tỉ lệ.

Lời giải chi tiết

                        

a) Chứng minh tích \(BD.CE\) không đổi.

Ta có \(\widehat {DOC}\) là góc ngoài của \(∆ BDO\) nên: \(\widehat {DOC} = \widehat B + {\widehat D_1}\)

hay \(\widehat {{O_1}} + \widehat {{O_2}} = \widehat B + \widehat {{D_1}} \Leftrightarrow {60^0} + \widehat {{O_2}} = {60^0} + \widehat {{D_1}}\)

\(\Leftrightarrow \widehat {{O_2}} = \widehat {{D_1}}\) 

Xét hai tam giác: \(∆BOD\) và \(∆CEO\), ta có: \(\widehat B = \widehat C = {60^0}\) (gt)  và \(\widehat {{O_2}} = \widehat {{D_1}}\) (cmt) 

\(⇒ ∆BOD\) đồng dạng \(∆CEO\) (g.g)

\( \displaystyle \Rightarrow {{B{\rm{D}}} \over {BO}} = {{CO} \over {CE}} \Rightarrow B{\rm{D}}.CE = BO.CO\)

hay \(\displaystyle B{\rm{D}}.CE = {{BC} \over 2}.{{BC} \over 2} = {{B{C^2}} \over 4}\) (không đổi)

Vậy \(\displaystyle B{\rm{D}}.CE = {{B{C^2}} \over 4}\) không đổi

b) Chứng minh \(ΔBOD\) đồng dạng \(ΔOED\)

Từ câu (a) ta có: \(∆BOD\) đồng dạng \(∆CEO\)

\( \displaystyle \Rightarrow {{O{\rm{D}}} \over {OE}} = {{B{\rm{D}}} \over {OC}} = {{B{\rm{D}}} \over {OB}}\) (do \(OC = OB\))

Mà \(\widehat B = \widehat {DOE} = {60^0}\) 

Vậy \(ΔBOD\) đồng dạng \(ΔOED\) (c.g.c) \(\Rightarrow \widehat {B{\rm{D}}O} = \widehat {O{\rm{D}}E}\)  

hay \(DO\) là tia phân giác của góc \(BDE\)

c) Vẽ \(OK \bot DE\) và gọi \(I\) là tiếp điểm của \((O)\) với \(AB\), khi đó \(OI \bot AB\). Xét hai tam giác vuông: \(IDO\) và \(KDO\), ta có:

\(DO\) chung 

\(\widehat {{D_1}} = \widehat {{D_2}}\) (do \(DO\) là tia phân giác của góc \(BDE\))

Vậy \(ΔIDO= ΔKDO \, (ch - gn)\)\( ⇒ OI = OK\) (các cạnh tương ứng).

Điều này chứng tỏ rằng \(OK\) là bán kính của \((O)\) và \(OK \bot DE\) nên \(K\) là tiếp điểm của \(DE\) với \((O)\) hay \(DE\) tiếp xúc với đường tròn \((O).\)

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

Bài 8 trang 134 SGK Toán 9 tập 2 Bài 8 trang 134 SGK Toán 9 tập 2

Giải bài 8 trang 134 SGK Toán 9 tập 2. Cho hai đường tròn (O; R) và (O'; r) tiếp xúc ngoài (R > r).

Xem chi tiết
Bài 9 trang 135 SGK Toán 9 tập 2 Bài 9 trang 135 SGK Toán 9 tập 2

Giải bài 9 trang 135 SGK Toán 9 tập 2. Cho tam giác ABC nội tiếp đường tròn (O') và ngoại tiếp đường tròn (O). Tia AO cắt đường tròn (O') tại D. Ta có:

Xem chi tiết
Bài 10 trang 135 SGK Toán 9 tập 2 Bài 10 trang 135 SGK Toán 9 tập 2

Giải bài 10 trang 135 SGK Toán 9 tập 2. Cho tam giác nhọn ABC nội tiếp đường tròn(O). Các cung nhỏ AB, BC, CA có số đo lần lượt là x + 75o, 2x + 25o, 3x - 22o. Một góc của tam giác ABC có số đo là:

Xem chi tiết
Bài 11 trang 135 SGK Toán 9 tập 2 Bài 11 trang 135 SGK Toán 9 tập 2

Giải bài 11 trang 135 SGK Toán 9 tập 2. Từ một điểm P ở ngoài đường tròn (O), kẻ cát tuyến PAB và PCD tới đường tròn. Gọi Q là một điểm nằm trên cung nhỏ BD (không chứa A và C) sao cho sđ cung BQ = 42° và sđ cung QD = 38°. Tính tổng

Xem chi tiết
Lý thuyết độ dài đường tròn, cung tròn Lý thuyết độ dài đường tròn, cung tròn

Công thức tính độ dài đường tròn, độ dài cung tròn

Xem chi tiết
Lý thuyết. Hình nón - Hình nón cụt - Diện tích xung quanh và thể tích của hình nón, hình nón cụt Lý thuyết. Hình nón - Hình nón cụt - Diện tích xung quanh và thể tích của hình nón, hình nón cụt

Khi quay một tam giác vuông góc AOC một vòng quanh cạnh góc vuông OA cố định thì được một hình nón.

Xem chi tiết
Lý thuyết Hệ số góc của đường thẳng y = ax + b (a ≠ 0). Lý thuyết Hệ số góc của đường thẳng y = ax + b (a ≠ 0).

Gọi A là giao điểm của đường thẳng

Xem chi tiết
Lý thuyết Hệ thức Vi-ét và ứng dụng. Lý thuyết Hệ thức Vi-ét và ứng dụng.

Hệ thức Vi-ét

Xem chi tiết

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com