Bài 15 trang 135 SGK Toán 9 tập 2

Bình chọn:
3.4 trên 22 phiếu

Giải bài 15 trang 135 SGK Toán 9 tập 2. Tam giác ABC cân tại A có cạnh đáy nhỏ hơn cạnh bên, nội tiếp đường tròn (O).Tiếp tuyến tại B và C của đường tròn lần lượt cắt tia AC và tia AB ở D và E.

Đề bài

Tam giác \(ABC\) cân tại \(A\) có cạnh đáy nhỏ hơn cạnh bên, nội tiếp đường tròn \((O).\) Tiếp tuyến tại \(B\) và \(C\) của đường tròn lần lượt cắt tia \(AC\) và tia \(AB\) ở \(D\) và \(E.\) Chứng minh:

a) \(BD^2 = AD.CD.\) 

b) Tứ giác \(BCDE\) là tứ giác nội tiếp.

c) \(BC\) song song với \(DE.\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

+) Trong một đường tròn, góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn  một cung thì có số đo bằng nhau. 

+) Trong một tứ giác, hai góc có đỉnh liên tiếp cùng nhìn một đoạn thẳng dưới một cặp góc bằng nhau thì là tứ giác nội tiếp.

Lời giải chi tiết

               

a) Xét \(∆ADB\) và \(∆BDC,\) ta có:

\(\widehat {BA{\rm{D}}} = \widehat {CB{\rm{D}}}\) ( góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn cung \(BC\)).

\(\widehat {{D_1}}\) góc chung 

Vậy \(∆ADB\) đồng dạng \(∆BDC\) ⇒ \(\displaystyle {{B{\rm{D}}} \over {C{\rm{D}}}} = {{A{\rm{D}}} \over {B{\rm{D}}}} (g-g) \) 

\(\Rightarrow B{{\rm{D}}^2} = A{\rm{D}}.C{\rm{D}}\) (đpcm)

b) Ta có \(\widehat {A{\rm{E}}C}\) là góc có đỉnh ở bên ngoài \((O)\)

\(\displaystyle \widehat {AEC} = {sđ\overparen{AC}-sđ\overparen{BC}\over 2} = { sđ\overparen{AB}-sđ\overparen{BC}\over 2} = \widehat {ADB}\)

Xét tứ giác \(BCDE\), ta có: \(\widehat {A{\rm{E}}C}\) và \(\widehat {ADB}\) là hai góc liên tiếp cùng nhìn đoạn \(BC\) và \(\widehat {A{\rm{E}}C} = \widehat {ADB}\) .

Vậy tứ giác \(BCDE\) nội tiếp đường tròn

c) Ta có: \(\widehat {ACB} + \widehat {BC{\rm{D}}} = {180^0}\) (hai góc kề bù).

hay \(\widehat {ABC} + \widehat {BC{\rm{D}}} = {180^0}\) (\(∆ABC\) cân tại \(A\))

\( \Rightarrow \widehat {ABC} = {180^0} - \widehat {BC{\rm{D}}}(1)\) 

Vì \(BCDE\) là tứ giác nội tiếp nên

\(\widehat {BE{\rm{D}}} + \widehat {BC{\rm{D}}} = {180^0} \Rightarrow \widehat {BE{\rm{D}}} = {180^0} - \widehat {BC{\rm{D}}}(2)\) 

So sánh (1) và (2), ta có: \(\widehat {ABC} = \widehat {BE{\rm{D}}}\) 

Ta cũng có: \(\widehat {ABC}\) và \(\widehat {BE{\rm{D}}}\) là hai góc đồng vị. Suy ra: \(BC // DE\) (đpcm)

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com

Góp ý Loigiaihay.com, nhận quà liền tay