Bài 5 trang 134 SGK Toán 9 tập 2


Giải bài 5 trang 134 SGK Toán 9 tập 2. Tam giác ABC vuông tại C có AC = 15cm. Đường cao CH chia AB thành hai đoạn AH và HB. Biết HB = 16cm. Tính diện tích tam giác ABC.

Đề bài

Tam giác \(ABC\) vuông tại \(C\) có \(AC = 15cm.\) Đường cao \(CH\) chia \(AB\) thành hai đoạn \(AH\) và \(HB.\) Biết \(HB = 16cm.\) Tính diện tích tam giác \(ABC.\) 

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

+) Áp dụng hệ thức lượng trong tam giác vuông. 

+) Diện tích tam giác: \(S=\dfrac{1}{2}h.a\) với \(h\) là chiều cao và \(a\) là cạnh đáy.

Lời giải chi tiết

Đặt \(AH = x\) \((x > 0).\)

Áp dụng hệ thức lượng trong tam giác vuông \(ABC\) có đường cao \(AH\) ta có: \(AC^2 = AB.AH\)

\(\begin{array}{l}
\Leftrightarrow {15^2} = \left( {x + 16} \right)x\\
\Leftrightarrow {x^2} + 16x - 225 = 0\\
\Leftrightarrow \left( {x - 9} \right)\left( {x + 25} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
x - 9 = 0\\
x + 25 = 0
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = 9\;\;\left( {tm} \right)\\
x = - 25\;\;\left( {ktm} \right)
\end{array} \right..\\
\Rightarrow AH = 9\;cm.
\end{array}\)

Ta có: \(HC^2 = AH. HB = 9. 16 = 144\) 

\(\Rightarrow\)\(HC=12\) \((cm).\)

Vậy diện tích tam giác \(ABC\) là:

\(\displaystyle S = {1 \over 2}AB.CH = {1 \over 2}.(16+9).12 = 150(c{m^2}).\)

Loigiaihay.com


Bình chọn:
3.9 trên 16 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài