Bài 11 trang 135 SGK Toán 9 tập 2>
Đề bài
Từ một điểm \(P\) ở ngoài đường tròn \((O)\), kẻ cát tuyến \(PAB\) và \(PCD\) tới đường tròn. Gọi \(Q\) là một điểm nằm trên cung nhỏ \(BD\) (không chứa \(A\) và \(C\)) sao cho \(sđ\overparen{BQ}=42^0\) và \(sđ\overparen{QD}=38^0\). Tính tổng \(\widehat {BP{\rm{D}}} + \widehat {AQC}.\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
+) Góc có đỉnh nằm ngoài đường tròn có số đo bằng nửa hiệu số đo hai cung bị chắn.
+) Số đo góc nội tiếp bằng nửa số đo cung bị chắn.
Lời giải chi tiết
Ta có \(\widehat {BP{\rm{D}}}\) là góc ở ngoài đường tròn (O) nên:
\(\displaystyle \widehat {BPD} = {sđ\overparen{BQD} -sđ\overparen{AC}\over 2}\) (góc có đỉnh nẳm ngoài đường tròn chắn cung \(AC\) và \(BD\)).
Ta có \(\widehat {AQC}\) là góc nội tiếp trong đường tròn (O) nên:
\(\displaystyle \widehat {AQC} = {1 \over 2}sđ\overparen{AC}\) (góc nội tiếp chắn cung \(AC\)).
\(\displaystyle \Rightarrow \widehat {BPD} + \widehat {AQC} = {sđ\overparen{BQD} -sđ\overparen{AC} \over 2} + {1 \over 2}sđ\overparen{AC}\)
\(\displaystyle ={1 \over 2}sđ\overparen{BQD}={{{{42}^0} + {{38}^0}} \over 2} = {40^0}.\)
Vậy \(\widehat {BP{\rm{D}}} + \widehat {AQC} = {40^0}.\)
Loigiaihay.com


- Bài 12 trang 135 SGK Toán 9 tập 2
- Bài 13 trang 135 SGK Toán 9 tập 2
- Bài 14 trang 135 SGK Toán 9 tập 2
- Bài 15 trang 135 SGK Toán 9 tập 2
- Bài 16 trang 135 SGK Toán 9 tập 2
>> Xem thêm
Các bài khác cùng chuyên mục
- Bài 43 trang 27 SGK Toán 9 tập 1
- Bài 48 trang 29 SGK Toán 9 tập 1
- Bài 26 trang 88 SGK Toán 9 tập 1
- Trả lời câu hỏi 2 Bài 7 trang 29 Toán 9 Tập 1
- Bài 47 trang 27 SGK Toán 9 tập 1
- Bài 53 trang 30 SGK Toán 9 tập 1
- Bài 49 trang 29 SGK Toán 9 tập 1
- Bài 30 trang 89 SGK Toán 9 tập 1
- Bài 58 trang 32 SGK Toán 9 tập 1
- Bài 27 trang 88 SGK Toán 9 tập 1