Bài 13 trang 135 SGK Toán 9 tập 2

Bình chọn:
4.2 trên 5 phiếu

Giải bài 13 trang 135 SGK Toán 9 tập 2. Cho đường tròn (O), cung BC có số đo bằng 120o, điểm A di chuyển trên cung lớn BC. Trên tia đối tia AB lấy điểm D sao cho AD = AC.

Đề bài

Cho đường tròn \((O)\), cung \(BC\) có số đo bằng \(120^0\), điểm \(A\) di chuyển trên cung lớn \(BC\). Trên tia đối tia \(AB\) lấy điểm \(D\) sao cho \(AD = AC\). Hỏi điểm \(D\) di chuyển trên đường nào?

Phương pháp giải - Xem chi tiết

+ Tính \(\widehat {BDC}\) dựa vào tính chất góc nội tiếp rồi sử dụng quỹ tích cung chứa góc dựng trên đoạn \(BC.\)

+ Xác định giới hạn quỹ tích của điểm \(D\) rồi kết luận.

Lời giải chi tiết

                     

Ta có  \(\displaystyle \widehat A = {1 \over 2}sđ\overparen{BC}\)\(= {60^0}\);\( \displaystyle \widehat {B{\rm{D}}C} = {1 \over 2}{.60^0} = {30^0}.\) (số đo góc nội tiếp bằng nửa số đo cung bị chắn.)

Như vậy, điểm \(D\) tạo với hai mút của đoạn thẳng \(BC\) cố định một góc \(\widehat {B{\rm{D}}C} = {30^0}\) nên \(D\) chuyển động trên cung chứa góc \(30^0\) dựng trên \(BC.\)

Ta có, khi \(A ≡ B\) thì \(D ≡ E\) và khi \(A ≡ C\) thì \(D ≡ C.\) 

Vậy khi \(A\) di chuyển trên cung lớn \(BC\) thì \(D\) di chuyển trên cung \(CE\) thuộc cung chứa góc \(30^0\) dựng trên \(BC.\)

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com