Bài 1 trang 134 SGK Toán 9 tập 2


Chu vi hình chữ nhật ABCD là 20cm. Hãy tìm giá trị nhỏ nhất của độ dài đường chéo AC.

Đề bài

Chu vi hình chữ nhật \(ABCD\) là \(20cm\). Hãy tìm giá trị nhỏ nhất của độ dài đường chéo \(AC\).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

+) Áp dụng định lý Py-ta-go.

+) Đánh giá \(A^2+m \ge m\), dấu "=" xảy ra khi \(A=0.\) 

Lời giải chi tiết

Gọi \(x\) (\(cm\)) là độ dài cạnh \(AB\) 

Vì  nửa chu vi hình chữ nhật đã cho là: \(20:2=10 \, cm\) nên \(AB+BC=10cm\) suy ra  \(BC=10 – x \, (cm).\)

Áp dụng định lí Py-ta-go trong tam giác vuông \(ABC\), ta có:

\(\eqalign{
& A{C^2} = A{B^2} + B{C^2} \cr
& = {x^2} + {\left( {10 - x} \right)^2} \cr
& = 2\left( {{x^2} - 10{\rm{x}} + 50} \right) \cr
& = 2\left[ {{{\left( {x - 5} \right)}^2} + 25} \right] \cr}\) 

Vì \((x-5)^2 \geq 0, \forall x \in \mathbb{R}\)

\(\Rightarrow A{C^2} = 2{\left( {x - 5} \right)^2} + 50 \ge 50, \forall x \in \mathbb{R}\)

Dấu "=" xảy ra khi : \(x – 5 = 0 ⇔ x = 5\)

Vậy giá trị nhỏ nhất của đường chéo AC là \(\sqrt{50} = 5\sqrt2\) (\(cm\))


Bình chọn:
3.9 trên 24 phiếu
  • Bài 2 trang 134 SGK Toán 9 tập 2

    Tam giác ABC có góc B = 45o, góc C = 30o. Nếu AC = 8 thì AB bằng:

  • Bài 3 trang 134 SGK Toán 9 tập 2

    Giải bài 3 trang 134 SGK Toán 9 tập 2. Cho tam giác ABC vuông ở C có đường trung tuyến BN vuông góc với đường trung tuyến CM, cạnh BC = a. Tính độ dài đường trung tuyến BN.

  • Bài 4 trang 134 SGK Toán 9 tập 2

    Giải bài 4 trang 134 SGK Toán 9 tập 2. Hãy chọn câu trả lời đúng.

  • Bài 5 trang 134 SGK Toán 9 tập 2

    Tam giác ABC vuông tại C có AC = 15cm. Đường cao CH chia AB thành hai đoạn AH và HB. Biết HB = 16cm. Tính diện tích tam giác ABC.

  • Bài 6 trang 134 SGK Toán 9 tập 2

    Giải bài 6 trang 134 SGK Toán 9 tập 2. Một hình chữ nhật cắt đường tròn như hình 121 biết AB = 4, BC = 5, DE = 3 (với cùng đơn vị đo).

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Xem ngay

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí