Bài 1 trang 134 SGK Toán 9 tập 2


Đề bài

Chu vi hình chữ nhật \(ABCD\) là \(20cm\). Hãy tìm giá trị nhỏ nhất của độ dài đường chéo \(AC\).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

+) Áp dụng định lý Py-ta-go.

+) Đánh giá \(A^2+m \ge m\), dấu "=" xảy ra khi \(A=0.\) 

Lời giải chi tiết

Gọi \(x\) (\(cm\)) là độ dài cạnh \(AB\) 

Vì  nửa chu vi hình chữ nhật đã cho là: \(20:2=10 \, cm\) nên \(AB+BC=10cm\) suy ra  \(BC=10 – x \, (cm).\)

Áp dụng định lí Py-ta-go trong tam giác vuông \(ABC\), ta có:

\(\eqalign{
& A{C^2} = A{B^2} + B{C^2} \cr
& = {x^2} + {\left( {10 - x} \right)^2} \cr
& = 2\left( {{x^2} - 10{\rm{x}} + 50} \right) \cr
& = 2\left[ {{{\left( {x - 5} \right)}^2} + 25} \right] \cr}\) 

Vì \((x-5)^2 \geq 0, \forall x \in \mathbb{R}\)

\(\Rightarrow A{C^2} = 2{\left( {x - 5} \right)^2} + 50 \ge 50, \forall x \in \mathbb{R}\)

Dấu "=" xảy ra khi : \(x – 5 = 0 ⇔ x = 5\)

Vậy giá trị nhỏ nhất của đường chéo AC là \(\sqrt{50} = 5\sqrt2\) (\(cm\))


Bình chọn:
3.9 trên 23 phiếu
  • Bài 2 trang 134 SGK Toán 9 tập 2

    Tam giác ABC có góc B = 45o, góc C = 30o. Nếu AC = 8 thì AB bằng:

  • Bài 3 trang 134 SGK Toán 9 tập 2

    Giải bài 3 trang 134 SGK Toán 9 tập 2. Cho tam giác ABC vuông ở C có đường trung tuyến BN vuông góc với đường trung tuyến CM, cạnh BC = a. Tính độ dài đường trung tuyến BN.

  • Bài 4 trang 134 SGK Toán 9 tập 2

    Giải bài 4 trang 134 SGK Toán 9 tập 2. Hãy chọn câu trả lời đúng.

  • Bài 5 trang 134 SGK Toán 9 tập 2

    Tam giác ABC vuông tại C có AC = 15cm. Đường cao CH chia AB thành hai đoạn AH và HB. Biết HB = 16cm. Tính diện tích tam giác ABC.

  • Bài 6 trang 134 SGK Toán 9 tập 2

    Giải bài 6 trang 134 SGK Toán 9 tập 2. Một hình chữ nhật cắt đường tròn như hình 121 biết AB = 4, BC = 5, DE = 3 (với cùng đơn vị đo).

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Xem ngay

>> Học trực tuyến lớp 9 và luyện vào lớp 10 tại Tuyensinh247.com. , cam kết giúp học sinh lớp 9 học tốt, hoàn trả học phí nếu học không hiệu quả.