Bài 1 trang 134 SGK Toán 9 tập 2

Bình chọn:
3 trên 9 phiếu

Giải bài 1 trang 134 SGK Toán 9 tập 2. Chu vi hình chữ nhật ABCD là 20cm. Hãy tìm giá trị nhỏ nhất của độ dài đường chéo AC.

Đề bài

Chu vi hình chữ nhật \(ABCD\) là \(20cm\). Hãy tìm giá trị nhỏ nhất của độ dài đường chéo \(AC\).

Phương pháp giải - Xem chi tiết

+) Áp dụng định lý Pi-ta-go.

+) Đánh giá \(A^2+m \ge m\), dấu "=" xảy ra khi \(A=0.\) 

Lời giải chi tiết

Gọi \(x\) (\(cm\)) là độ dài cạnh \(AB\) 

Vì  nửa chu vi hình chữ nhật đã cho là: \(20:2=10 \, cm\) nên \(AB+BC=10cm\) suy ra  \(BC=10 – x \, (cm).\)

Áp dụng định lí Py-ta-go trong tam giác vuông \(ABC\), ta có:

\(\eqalign{
& A{C^2} = A{B^2} + B{C^2} \cr
& = {x^2} + {\left( {10 - x} \right)^2} \cr
& = 2\left( {{x^2} - 10{\rm{x}} + 50} \right) \cr
& = 2\left[ {{{\left( {x - 5} \right)}^2} + 25} \right] \cr}\) 

Vì \((x-5)^2 \geq 0 \Rightarrow A{C^2} = 2{\left( {x - 5} \right)^2} + 50 \ge 50 \)

Đẳng thức xảy ra khi : \(x – 5 = 0 ⇔ x = 5\)

Vậy giá trị nhỏ nhất của đường chéo AC là \(\sqrt50 = 5\sqrt2\) (\(cm\))

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com