Bài 68 trang 31 SGK Toán 8 tập 1>
Áp dụng hằng đẳng thức đáng nhớ
Video hướng dẫn giải
Áp dụng hằng đẳng thức đáng nhớ để thực hiện phép chia:
LG a.
\(({x^2} + {\rm{ }}2xy{\rm{ }} + {\rm{ }}{y^2}):\left( {x{\rm{ }} + {\rm{ }}y} \right)\);
Phương pháp giải:
- Áp dụng hằng đẳng thức đáng nhớ phân tích đa thức bị chia thành nhân tử, sau đó thực hiện phép chia.
- Áp dụng hằng đẳng thức
\({\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\)
Lời giải chi tiết:
\(({x^2} + {\rm{ }}2xy{\rm{ }} + {\rm{ }}{y^2}):\left( {x{\rm{ }} + {\rm{ }}y} \right)\)
\(= {\left( {x{\rm{ }} + {\rm{ }}y} \right)^2}:\left( {x{\rm{ }} + {\rm{ }}y} \right) \)
\(= x{\rm{ }} + {\rm{ }}y\).
LG b.
\((125{x^3} + {\rm{ }}1){\rm{ }}:{\rm{ }}\left( {5x{\rm{ }} + {\rm{ }}1} \right)\);
Phương pháp giải:
- Áp dụng hằng đẳng thức đáng nhớ phân tích đa thức bị chia thành nhân tử, sau đó thực hiện phép chia.
- Áp dụng hằng đẳng thức
\({A^3} + {B^3} = \left( {A + B} \right)({A^2} - AB + {B^2})\)
Lời giải chi tiết:
\((125{x^3} + {\rm{ }}1){\rm{ }}:{\rm{ }}\left( {5x{\rm{ }} + {\rm{ }}1} \right){\rm{ }} \)
\(= {\rm{ }}[{\left( {5x} \right)^3} + 1^3]{\rm{ }}:{\rm{ }}\left( {5x{\rm{ }} + {\rm{ }}1} \right)\)
\( = (5x + 1)[{(5x)^2} - 5x.1 + {1^2}]:(5x + 1)\)
\( = (5x + 1)(25{x^2} - 5x + 1):(5x + 1)\)
\(= 25{x^2} - 5x + 1\)
LG c.
\(({x^2}-{\rm{ }}2xy{\rm{ }} + {\rm{ }}{y^2}):\left( {y{\rm{ }}-{\rm{ }}x} \right)\).
Phương pháp giải:
- Áp dụng hằng đẳng thức đáng nhớ phân tích đa thức bị chia thành nhân tử, sau đó thực hiện phép chia.
- Áp dụng hằng đẳng thức
\({\left( {A - B} \right)^2} = {A^2} - 2AB + {B^2}\)
Lời giải chi tiết:
\(({x^2}-{\rm{ }}2xy{\rm{ }} + {\rm{ }}{y^2}){\rm{ }}:{\rm{ }}\left( {y{\rm{ }}-{\rm{ }}x} \right){\rm{ }}\)
\(= {\rm{ }}{\left( {x{\rm{ }}-{\rm{ }}y} \right)^2}:{\rm{ }}\left[ { - \left( {x{\rm{ }}-{\rm{ }}y} \right)} \right]{\rm{ }}\)
\(= {\rm{ }} - {\rm{ }}\left( {x{\rm{ }}-{\rm{ }}y} \right){\rm{ }} = {\rm{ }}y{\rm{ }}-{\rm{ }}x\)
Hoặc ta làm như sau:
\(\begin{array}{l}
\left( {{x^2} - 2xy + {y^2}} \right):\left( {y - x} \right)\\
= \left( {{y^2} - 2xy + {x^2}} \right):\left( {y - x} \right)\\
= {\left( {y - x} \right)^2}:\left( {y - x} \right)\\
= y - x
\end{array}\)
Loigiaihay.com
- Bài 69 trang 31 SGK Toán 8 tập 1
- Bài 70 trang 32 SGK Toán 8 tập 1
- Bài 71 trang 32 SGK Toán 8 tập 1
- Bài 72 trang 32 SGK Toán 8 tập 1
- Bài 73 trang 32 SGK Toán 8 tập 1
>> Xem thêm