Bài 53 trang 34 SGK Toán 8 tập 2>
Giải phương trình:
Đề bài
Giải phương trình:
\(\dfrac{{x + 1}}{9} + \dfrac{{x + 2}}{8} = \dfrac{{x + 3}}{7} + \dfrac{{x + 4}}{6}\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Cộng \(2\) vào hai vế của phương trình sau đó giải phương trình mới để tìm \( x\).
Lời giải chi tiết
Cộng \(2\) vào hai vế của phương trình, ta được:
\(\dfrac{{x + 1}}{9} + 1 + \dfrac{{x + 2}}{8} + 1 = \dfrac{{x + 3}}{7} + 1\)\(\, + \dfrac{{x + 4}}{6} + 1\)
\( \Leftrightarrow \dfrac{{x + 10}}{9} + \dfrac{{x + 10}}{8} = \dfrac{{x + 10}}{7} \)\(\,+ \dfrac{{x + 10}}{6}\)
\( \Leftrightarrow \dfrac{{x + 10}}{9} + \dfrac{{x + 10}}{8} - \dfrac{{x + 10}}{7}\)\(\, - \dfrac{{x + 10}}{6}=0\)
\( \Leftrightarrow \left( {x + 10} \right)\left( {\dfrac{1}{9} + \dfrac{1}{8} - \dfrac{1}{7} - \dfrac{1}{6}} \right) = 0{\kern 1pt}\)\( \;(*)\)
Vì \(\dfrac{1}{9} < \dfrac{1}{7};\dfrac{1}{8} < \dfrac{1}{6}\) nên \(\dfrac{1}{9} + \dfrac{1}{8} - \dfrac{1}{7} - \dfrac{1}{6} < 0\)
\((*) \Leftrightarrow x+10 = 0 \)
\(\Leftrightarrow x= -10 \)
Vậy phương trình có nghiệm duy nhất \(x = -10\).
Loigiaihay.com
- Bài 54 trang 34 SGK Toán 8 tập 2
- Bài 55 trang 34 SGK Toán 8 tập 2
- Bài 56 trang 34 SGK Toán 8 tập 2
- Lý thuyết Ôn tập chương 3. Phương trình bậc nhất một ẩn
- Bài 52 trang 33 SGK Toán 8 tập 2
>> Xem thêm