Bài 51 trang 33 SGK Toán 8 tập 2


Giải các phương trình sau bằng cách đưa về phương trình tích:

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Giải các phương trình sau bằng cách đưa về phương trình tích:

LG a.

\(\left( {2x + 1} \right)\left( {3x - 2} \right) = \left( {5x - 8} \right)\left( {2x + 1} \right)\)

Phương pháp giải:

Sử dụng phương pháp đặt nhân tử chung để đưa phương trình đã cho về dạng phương trình tích.

Giải chi tiết:

\(\left( {2x + 1} \right)\left( {3x - 2} \right) = \left( {5x - 8} \right)\left( {2x + 1} \right)\)

\(\Leftrightarrow\)\( \left( {2x + 1} \right)\left( {3x - 2} \right) - \left( {5x - 8} \right)\left( {2x + 1} \right)\) \( = 0\)

\(\Leftrightarrow \left( {2x + 1} \right)\left( {3x - 2 - 5x + 8} \right) = 0\)

\( \Leftrightarrow \left( {2x + 1} \right)\left( {6- 2x} \right) = 0\)

\( \Leftrightarrow \left[ {\matrix{{2x + 1 = 0} \cr {6 - 2x = 0} \cr} \Leftrightarrow \left[ {\matrix{{x = \dfrac{ - 1} {2}} \cr {x = 3} \cr} } \right.} \right.\)

Vậy phương trình có hai nghiệm \(x = \dfrac{{ - 1}}{2};\; x = {3}\) .

LG b.

\(4{x^2} - 1 = \left( {2x + 1} \right)\left( {3x - 5} \right)\)

Phương pháp giải:

Biến đổi \(4{x^2} - 1 = {\left( {2x} \right)^2} - {1^2}\)\(\, = \left( {2x - 1} \right)\left( {2x + 1} \right)\) sau đó đặt nhân tử chung đưa phương trình về dạng phương trình tích.

Giải chi tiết:

\(4{x^2} - 1 = \left( {2x + 1} \right)\left( {3x - 5} \right)\)

\(\Leftrightarrow \left( {2x - 1} \right)\left( {2x + 1} \right) \) \(= \left( {2x + 1} \right)\left( {3x - 5} \right)\)

\(\Leftrightarrow \left( {2x + 1} \right)\left( {2x - 1 - 3x + 5} \right)=0\)

\(\Leftrightarrow \left( {2x + 1} \right)\left( {4 - x} \right) = 0\)

\( \Leftrightarrow \left[ {\matrix{{2x + 1 = 0} \cr {4 - x = 0} \cr} \Leftrightarrow \left[ {\matrix{{x = \dfrac{{ - 1}}{2}} \cr {x = 4} \cr} } \right.} \right.\)

Vậy phương trình có hai nghiệm \(x = \dfrac{{ - 1}}{2};x = 4\)

LG c.

\({\left( {x + 1} \right)^2} = 4\left( {{x^2} - 2x + 1} \right);\)

Phương pháp giải:

Sử dụng phương pháp hằng đẳng thức để đưa phương trình đã cho về dạng phương trình tích.

Giải chi tiết:

Cách 1:

\({\left( {x + 1} \right)^2} = 4\left( {{x^2} - 2x + 1} \right)\)

\(\Leftrightarrow {\left( {x + 1} \right)^2}\) \( = \left[ {2(x - 1} \right){]^2}\) 

\( \Leftrightarrow {\left( {x + 1} \right)^2} - {\left( {2x - 2} \right)^2} = 0\)            

\(\Leftrightarrow \left( {x + 1 - 2x + 2} \right)\left( {x + 1 + 2x - 2} \right) \) \(= 0\)

\(\Leftrightarrow \left( {3 - x} \right)\left( {3x - 1} \right) = 0\)

\(\Leftrightarrow \left[ {\matrix{{3 - x = 0} \cr {3x - 1 = 0} \cr} \Leftrightarrow \left[ {\matrix{{x = 3} \cr {x = \dfrac{1}{3}} \cr} } \right.} \right.\)

Vậy phương trình có hai nghiệm: \( x = 3;\; {x = \dfrac{1}{3}}\)

Cách 2:

Ta có:

\((x + 1)^2 = 4(x^2 – 2x + 1)\) 

\(⇔ (x + 1)^2 - 4(x^2 – 2x + 1) = 0\)

\(⇔ x^2 + 2x +1- 4x^2 + 8x – 4 = 0\)

\(⇔ - 3x^2 + 10x – 3 = 0\)

\(⇔ (- 3x^2 + 9x) + (x – 3) = 0\)

\(⇔ -3x (x – 3)+ ( x- 3) = 0\)

\(⇔ ( x- 3). ( - 3x + 1) = 0\) 

\(⇔ x - 3 = 0\) hoặc  \(-3x + 1= 0\)

+) \(x - 3 = 0\) \( ⇔ x = 3\)

+) \(- 3x + 1 = 0\) \( ⇔ - 3x = - 1 ⇔ x = \dfrac{1}{3}\)

Vậy tập nghiệm của phương trình đã cho là: \(S = \left\{ {3;\dfrac{1}{3}} \right\}\)

LG d.

\(2{x^3} + 5{x^2} - 3x = 0\)

Phương pháp giải:

Sử dụng phương pháp đặt nhân tử chung và phương pháp tách để đưa phương trình về dạng phương trình tích.

*) Giải phương trình tích: \(A(x).B(x)=0\)

\(\Leftrightarrow \left[ \begin{gathered}
A\left( x \right) = 0 \hfill \\
B\left( x \right) = 0 \hfill \\ 
\end{gathered} \right.\)

Giải chi tiết:

\(2{x^3} + 5{x^2} - 3x = 0\)

\(\Leftrightarrow x\left( {2{x^2} + 5x - 3} \right) = 0\)

\(\Leftrightarrow x(2{x^2} + 6x - x - 3) = 0\)

\(\Leftrightarrow x\left[ {2x\left( {x + 3} \right) - \left( {x + 3} \right)} \right] = 0\)

\(\Leftrightarrow x\left( {x + 3} \right)\left( {2x - 1} \right) = 0\)

\(\Leftrightarrow \left[ {\matrix{{x = 0} \cr {x + 3 = 0} \cr {2x - 1 = 0} \cr} } \right. \Leftrightarrow \left[ {\matrix{{x = 0} \cr {x = - 3} \cr {x =\dfrac{1}{2}} \cr} } \right.\)

Vậy phương trình có ba nghiệm \(x = 0;\; x = -3;\;  x =\dfrac{1}{2}\).

Loigiaihay.com


Bình chọn:
4.1 trên 120 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Xem ngay

Tham Gia Group Dành Cho Lớp 8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí