Bài 5 trang 142 Tài liệu dạy – học Toán 9 tập 2

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Cho tam giác ABC, trên tia đối của tia AB lấy một điểm D sao cho AD = AC. Dựng đường tròn tâm O ngoại

Đề bài

Cho tam giác ABC, trên tia đối của tia AB lấy một điểm D sao cho AD = AC. Dựng đường tròn tâm O ngoại tiếp tam giác DBC. Gọi H và K lần lượt là trung điểm của BC và BD. Chứng minh OH > OK.

Phương pháp giải - Xem chi tiết

Sử dụng định lí: Dây dài hơn thì gần tâm hơn.

Lời giải chi tiết

 

Vì H, K lần lượt là trung điểm của BC và BD nên \(OH \bot BC;\,\,OK \bot BD\) (quan hệ vuông góc giữa đường kính và dây cung).

Áp dụng bất đẳng thức tam giác trong tam giác ABC ta có: \(AB + AC > BC\).

Mà \(AC = AD\,\,\left( {gt} \right) \Rightarrow AB + AD > BC\)

\(\Rightarrow BD > BC \Rightarrow OK < OH\) (dây lớn hơn thì gần tâm hơn).

Vậy \(OH > OK\).

 Loigiaihay.com

Các bài liên quan: - Ôn tập cuối năm – Hình học 9

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com