Bài 12 trang 142 Tài liệu dạy – học Toán 9 tập 2

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Cho hai đường tròn (O) và (O’) cắt nhau tại B và C. Tiếp tuyến tại C của đường tròn (O) cắt đường tròn (O’) tại

Đề bài

Cho hai đường tròn (O) và (O’) cắt nhau tại B và C. Tiếp tuyến tại C của đường tròn (O) cắt đường tròn (O’) tại điểm thứ hai M. Vẽ cát tuyến MBA (A thuộc đường tròn tâm O). Qua M vẽ tiếp tuyến d của đường tròn (O’). Chứng minh rằng:

a) \(M{C^2} = MA.MB\)

b) AC // d

Phương pháp giải - Xem chi tiết

a) Chứng minh tam giác MAC và MCB đồng dạng.

b) Chứng minh hai góc ở vị trí so le trong bằng nhau.

Lời giải chi tiết

 

a) Xét tam giác MAC và tam giác MCB có:

\(\widehat M\,chung;\)

\(\widehat {MAC} = \widehat {MCB}\) (góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn cung BC của đường tròn \(\left( O \right)\));

\( \Rightarrow \Delta MAC \sim \Delta MCB\,\,\left( {g.g} \right) \)

\(\Rightarrow \dfrac{{MA}}{{MC}} = \dfrac{{MC}}{{MB}} \Rightarrow M{C^2} = MA.MB\).

b) Ta có: \(\widehat {BMx} = \widehat {MCB}\)  (góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn cung BC của đường tròn \(\left( {O'} \right)\)).

Mà \(\widehat {MCB} = \widehat {MAC}\) (cmt) \( \Rightarrow \widehat {BMx} = \widehat {MAC}\). Hai góc này ở vị trí so le trong \( \Rightarrow AC//d\,\,\left( {dpcm} \right)\).

 Loigiaihay.com

Các bài liên quan: - Ôn tập cuối năm – Hình học 9

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com