Bài 2 trang 141 Tài liệu dạy – học Toán 9 tập 2


Giải bài tập Trên đường tròn (O ; R) lấy ba điểm A, B, C sao cho dây cung

Đề bài

Trên đường tròn (O ; R) lấy ba điểm A, B, C sao cho dây cung \(AB = R\sqrt 3 \) ,

BC = R, tia BO nằm giữa hai tia BA, BC. Tính số đo của \(\widehat {AOB},\widehat {BOC},\widehat {COA}\) .

Phương pháp giải - Xem chi tiết

+) Gọi H là trung điểm của AB, sử dụng hàm số lượng giác sin, tính \(\widehat {AOH}\), từ đó suy ra \(\widehat {AOB}\) .

+) Chứng minh tam giác OBC đều, suy ra \(\widehat {BOC}\).

+) Sử dụng tổng \(\widehat {AOB} + \widehat {BOC} + \widehat {COA} = {360^0}\), tính \(\widehat {COA}\).

Lời giải chi tiết

 

+) Gọi H là trung điểm của AB \( \Rightarrow OH \bot AB\) (quan hệ vuông góc giữa đường kính và dây cung).

Ta có \(AH = BH = \dfrac{{AB}}{2} = \dfrac{{R\sqrt 3 }}{2}\).

Xét tam giác vuông OAH có \(\sin \widehat {AOH} = \dfrac{{AH}}{{OA}} = \dfrac{{\dfrac{{R\sqrt 3 }}{2}}}{R} = \dfrac{{\sqrt 3 }}{2}\) \( \Rightarrow \widehat {AOH} = {60^0}\).

Ta có \(OA = OB = R \Rightarrow \Delta OAB\) cân tại O \( \Rightarrow \) Đường cao OH đồng thời là phân giác

\( \Rightarrow \widehat {AOB} = 2\widehat {AOH} = {2.60^0} = {120^0}\).

+) Xét tam giác OBC có \(OB = OC = BC = R \Rightarrow \Delta OBC\) đều \( \Rightarrow \widehat {BOC} = {60^0}\).

+) Ta có \(\widehat {AOB} + \widehat {BOC} + \widehat {COA} = {360^0} \)

\(\Rightarrow {120^0} + {60^0} + \widehat {COA} = {360^0} \) \(\Rightarrow \widehat {COA} = {180^0}\).

 Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Ôn tập cuối năm – Hình học 9

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài