Bài 15 trang 143 Tài liệu dạy – học Toán 9 tập 2


Giải bài tập Trên đường tròn tâm O chọn các điểm A, B, C sao cho

Đề bài

Trên đường tròn tâm O chọn các điểm A, B, C sao cho sđ cung AB = sđ cung AC\( = {120^o}\) (A nằm giữa B và C). Đường đi qua trung điểm D, E lần lượt của hai cung AB và AC cắt các dây AB, AC lần lượt tại P và Q.

a) Chứng minh tam giác APQ là tam giác đều.

b) Chứng minh \(DP = \dfrac{1}{2}PQ = QE\)

Phương pháp giải - Xem chi tiết

a) Chứng minh tam giác APQ có hai góc bằng 600.

b) Chứng minh tam giác OAD đều, suy ra P là trung điểm của OD.

Chứng minh tương tự Q là trung điểm của OE.

Chứng minh OD = OE = PQ.

Lời giải chi tiết

 

a) D là trung điểm của cung  và \(OD \bot AB\) tại P (đường thẳng đi qua điểm chính giữa của 1 dây thì vuông góc với dây căng cung ấy).

Chứng minh hoàn toàn tương tự ta có: \(\widehat {AOE} = \widehat {COE} = {60^0}\) và \(OE \bot AC\) tại Q.

Xét tứ giác OPAQ có: \(\widehat {OPA} + \widehat {OQA} = {90^0} + {90^0} = {180^0} \Rightarrow \) Tứ giác OPAQ là tứ giác nội tiếp (Tứ giác có tổng hai góc đối bằng 1800)

\( \Rightarrow \widehat {APQ} = \widehat {AOQ} = {60^0};\)\(\,\,\widehat {AQP} = \widehat {AOP} = {60^0}\) (hai góc nội tiếp cùng chắn 1 cung thì bằng nhau).

Xét tam giác APQ có: \(\widehat {APQ} = \widehat {AQP} = {60^0} \Rightarrow \Delta APQ\) là tam giác đều.

b)  Xét tam giác OAD có \(OA = OD = R;\,\,\widehat {AOD} = {60^0}\) \( \Rightarrow \Delta OAD\) đều.

\( \Rightarrow \) Đường cao AP đồng thời là trung tuyến \( \Rightarrow PD = \dfrac{1}{2}OD\).

Chứng minh hoàn toàn tương tự ta có \(QE = \dfrac{1}{2}OE\).

Mà \(OD = OE \Rightarrow PD = QE = \dfrac{1}{2}OD\).

Xét tam giác AOD và tam giác AQP có:

AD = AP; AO = AQ; \(\widehat {OAD} = \widehat {POQ} = {60^0}\).

\( \Rightarrow \Delta AOD = \Delta AQP\,\,\left( {c.g.c} \right)\) \( \Rightarrow OD = PQ\).

Vậy \(PD = QE = \dfrac{1}{2}PQ\,\,\left( {dpcm} \right)\).

 Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Ôn tập cuối năm – Hình học 9

>> Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài