Bài 26 trang 141 Tài liệu dạy – học Toán 9 tập 2

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Tìm hai số biết tổng là 7 và tổng nghịch đảo

Đề bài

Tìm hai số biết tổng là 7 và tổng nghịch đảo là \(\dfrac{7}{{12}}\) .

Phương pháp giải - Xem chi tiết

Gọi hai số phải tìm là x và y.

Do hai số có tổng bằng 7 nên ta có phương trình … (1).

Do hai số có tổng nghịch đảo là \(\dfrac{7}{{12}}\) nên ta có phương trình … (2).

Từ (1) và (2) ta có hệ phương trình …

Giải hệ phương trình và kết luận.

Lời giải chi tiết

Gọi hai số phải tìm là x và y.

Do hai số có tổng bằng 7 nên ta có phương trình \(x + y = 7\) (1).

Do hai số có tổng nghịch đảo là \(\dfrac{7}{{12}}\) nên ta có phương trình \(\dfrac{1}{x} + \dfrac{1}{y} = \dfrac{7}{{12}}\,\,\left( 2 \right)\).

Từ (1) và (2) ta có hệ phương trình \(\left\{ \begin{array}{l}x + y = 7\\\dfrac{1}{x} + \dfrac{1}{y} = \dfrac{7}{{12}}\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}x + y = 7\\\dfrac{{x + y}}{{xy}} = \dfrac{7}{{12}}\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}x + y = 7\\\dfrac{7}{{xy}} = \dfrac{7}{{12}}\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}x + y = 7\\xy = 12\end{array} \right.\)

Áp dụng định lí Vi-ét đảo \( \Rightarrow x,y\) là nghiệm của phương trình \({X^2} - 7X + 12 = 0\)  (1).

Ta có : \(\Delta  = {\left( { - 7} \right)^2} - 4.12 = 1 \Rightarrow \) Phương trình (*) có 2 nghiệm phân biệt \(\left[ \begin{array}{l}{X_1} = \dfrac{{7 + 1}}{2} = 4\\{X_2} = \dfrac{{7 - 1}}{2} = 3\end{array} \right.\).

Vậy hai số cần tìm là 3 và 4.

 Loigiaihay.com

Các bài liên quan: - Ôn tập cuối năm – Đại số 9

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com