Bài 18 trang 140 Tài liệu dạy – học Toán 9 tập 2

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Không giải phương trình hãy tính tổng và tích các nghiệm của mỗi phương trình sau:

Đề bài

Không giải phương trình hãy tính tổng và tích các nghiệm của mỗi phương trình sau:

a) \(3{x^2} - 7x + 5 = 0\)

b) \({x^2} - x - 2 = 0\)

c) \(m{x^2} - 2(m + 1)x + m + 2 = 0(m \ne 0)\)

d) \((m + 1){x^2} + mx - m + 3 = 0(m \ne  - 1)\)

e) \((2 - \sqrt 3 ){x^2} + 4x + 2 + \sqrt 2  = 0\)

f) \({x^2} - (1 + \sqrt 2 )x + \sqrt 2  = 0\)

Phương pháp giải - Xem chi tiết

Phương trình bậc hai \(a{x^2} + bx + c = 0\,\,\left( {a \ne 0} \right)\) có 2 nghiệm phân biệt \({x_1};{x_2}\). Theo định lí Vi-ét ta có: \(\left\{ \begin{array}{l}S = {x_1} + {x_2} = \dfrac{{ - b}}{a}\\P = {x_1}{x_2} = \dfrac{c}{a}\end{array} \right.\).

Lời giải chi tiết

a) \(3{x^2} - 7x + 5 = 0\) có \(\Delta  = {\left( { - 7} \right)^2} - 4.3.5 =  - 11 \Rightarrow \) Phương trình vô nghiệm.

b) \({x^2} - x - 2 = 0\) có \(ac = 1.\left( { - 2} \right) < 0 \Rightarrow \) Phương trình có 2 nghiệm phân biệt \({x_1};{x_2}\).

Áp dụng định lí Vi-ét ta có: \(\left\{ \begin{array}{l}S = {x_1} + {x_2} = \dfrac{7}{3}\\P = {x_1}{x_2} = \dfrac{5}{3}\end{array} \right.\).

c) \(m{x^2} - 2\left( {m + 1} \right)x + m + 2 = 0\,\,\left( {m \ne 0} \right)\)

Ta có \(\Delta ' = {\left( {m + 1} \right)^2} - m\left( {m + 2} \right) \)\(\,= {m^2} + 2m + 1 - {m^2} - 2m = 1 > 0 \)

\(\Rightarrow \) Phương trình có 2 nghiệm phân biệt \({x_1};{x_2}\).

Áp dụng định lí Vi-ét ta có: \(\left\{ \begin{array}{l}S = {x_1} + {x_2} = \dfrac{{2\left( {m + 1} \right)}}{m}\\P = {x_1}{x_2} = \dfrac{{m + 2}}{m}\end{array} \right.\).

d) \(\left( {m + 1} \right){x^2} + mx - m + 3 = 0\,\,\,\left( {m \ne  - 1} \right)\)

Ta có: \(\Delta  = {m^2} - 4\left( {m + 1} \right)\left( { - m + 3} \right) \)\(\,= {m^2} + 4{m^2} - 8m - 12 \)\(\,= 5{m^2} - 8m - 12\)

Để phương trình có 2 nghiệm phân biệt \( \Leftrightarrow \Delta  > 0 \Leftrightarrow 5{m^2} - 8m - 12 > 0\). Khi đó phương trình có 2 nghiệm phân biệt \({x_1};{x_2}\).

Áp dụng định lí Vi-ét ta có: \(\left\{ \begin{array}{l}S = {x_1} + {x_2} = \dfrac{m}{{m + 1}}\\P = {x_1}{x_2} = \dfrac{{ - m + 3}}{{m + 1}}\end{array} \right.\) với m thỏa mãn \(5{m^2} - 8m - 12 > 0\).

e) \(\left( {2 - \sqrt 3 } \right){x^2} + 4x + 2 + \sqrt 2  = 0\) ta có:

\(\Delta ' = {2^2} - \left( {2 - \sqrt 3 } \right)\left( {2 + \sqrt 2 } \right) \)\(\,= 4 - 4 - 2\sqrt 2  + 2\sqrt 3  + \sqrt 6  \)\(\,=  - 2\sqrt 2  + 2\sqrt 3  + \sqrt 6  > 0\)

\(\Rightarrow \) Phương trình có 2 nghiệm phân biệt \({x_1};{x_2}\).

Áp dụng định lí Vi-ét ta có: \(\left\{ \begin{array}{l}S = {x_1} + {x_2} = \dfrac{4}{{2 - \sqrt 3 }}\\P = {x_1}{x_2} = \dfrac{{2 + \sqrt 2 }}{{2 - \sqrt 3 }}\end{array} \right.\).

f) \({x^2} - \left( {1 + \sqrt 2 } \right)x + \sqrt 2  = 0\)

Ta có \(\Delta  = {\left( {1 + \sqrt 2 } \right)^2} - 4\sqrt 2  \)\(\,= 3 + 2\sqrt 2  - 4\sqrt 2  = 3 - 2\sqrt 2  > 0 \Rightarrow \) Phương trình có 2 nghiệm phân biệt \({x_1};{x_2}\).

Áp dụng định lí Vi-ét ta có: \(\left\{ \begin{array}{l}S = {x_1} + {x_2} =  - 1 - \sqrt 2 \\P = {x_1}{x_2} = \sqrt 2 \end{array} \right.\).

 Loigiaihay.com

Các bài liên quan: - Ôn tập cuối năm – Đại số 9

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa . Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu