Bài 14 trang 140 Tài liệu dạy – học Toán 9 tập 2

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Một thửa ruộng hình chữ nhật có diện tích 100 m2. Nếu tăng chiều rộng lên 2m và giảm chiều dài đi 5 m thì

Đề bài

Một thửa ruộng hình chữ nhật có diện tích 100 m2. Nếu tăng chiều rộng lên 2m và giảm chiều dài đi 5 m thì diện tích của thửa ruộng tăng thêm 5 m2. Hãy tính độ dài các cạnh của thửa ruộng.

Phương pháp giải - Xem chi tiết

Gọi chiều dài thửa ruộng hình chữ nhật là x (m).

Do diện tích thửa ruộng là 100m2 nên chiều rộng của thửa ruộng hình chữ nhật là … (m).

Chiều dài lúc sau của thửa ruộng là … (m)

Chiều rộng lúc sau của thửa ruộng là … (m).

Diện tích lúc sau của thửa ruộng là … (m2).

Vì diện tích của thửa ruộng tăng thêm 5 m2 nên diện tích lúc sau của thửa ruộng là … (m2), do đó ta có phương trình ….

Giải phương trình và kết luận.

Lời giải chi tiết

Gọi chiều dài thửa ruộng hình chữ nhật là x (m).

Do diện tích thửa ruộng là 100m2 nên chiều rộng của thửa ruộng hình chữ nhật là \(\dfrac{{100}}{x}\,\,\left( m \right)\).

Chiều dài lúc sau của thửa ruộng là \(x - 5\,\,\left( m \right)\)

Chiều rộng lúc sau của thửa ruộng là \(\dfrac{{100}}{x} + 2\,\,\left( m \right)\).

Diện tích lúc sau của thửa ruộng là \(\left( {x - 5} \right)\left( {\dfrac{{100}}{x} + 2} \right)\) (m2).

Vì diện tích của thửa ruộng tăng thêm 5 m2 nên diện tích lúc sau của thửa ruộng là \(100 + 5 = 105\,\,\left( {{m^2}} \right)\), do đó ta có phương trình \(\left( {x - 5} \right)\left( {\dfrac{{100}}{x} + 2} \right) = 105\).

\(\begin{array}{l} \Leftrightarrow \left( {x - 5} \right)\left( {100 + 2x} \right) = 105x\\ \Leftrightarrow 100x + 2{x^2} - 500 - 10x = 105x\\ \Leftrightarrow 2{x^2} - 15x - 500 = 0\\ \Leftrightarrow 2{x^2} - 40x + 25x - 500 = 0\\ \Leftrightarrow 2x\left( {x - 20} \right) + 25\left( {x - 20} \right) = 0 \\\Leftrightarrow \left( {x - 20} \right)\left( {2x + 25} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - 20 = 0\\2x + 25 = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = 20\,\,\,\,\,\,\left( {tm} \right)\\x = \dfrac{{ - 25}}{2}\,\,\left( {ktm} \right)\end{array} \right.\end{array}\)

Vậy chiều dài ban đầu của thửa ruộng là 20m, chiều rộng ban đầu của thửa ruộng là 5m.

 Loigiaihay.com

Các bài liên quan: - Ôn tập cuối năm – Đại số 9

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com

Góp ý Loigiaihay.com, nhận quà liền tay