Bài 16 trang 140 Tài liệu dạy – học Toán 9 tập 2

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập a) Vẽ parabol (P):

Đề bài

a) Vẽ parabol (P): \(y =  - \dfrac{1}{4}{x^2}\) và đường thẳng (d) \(y = \dfrac{1}{2}x - 2\) trên cùng mặt phẳng tọa độ.

b) Tìm tọa độ giao điểm giữa (P) và (d).

Phương pháp giải - Xem chi tiết

a) Lập bảng giá trị và vẽ đồ thị hàm số \(y =  - \dfrac{1}{4}{x^2}\)  và vẽ đường thẳng (d).

b) Giải phương trình hoành độ giao điểm.

Lời giải chi tiết

a) Vẽ đồ thị hàm số \(y =  - \dfrac{1}{4}{x^2}\).

Bảng giá trị

\(x\)

-4

-2

0

2

4

\(y =  - \dfrac{1}{4}{x^2}\)

-4

-1

0

1

4

Vẽ đồ thị hàm số \(y = \dfrac{1}{2}x - 2\)

+) Cho \(x = 0 \Rightarrow y =  - 2\).

+) Cho \(x = 2 \Rightarrow y =  - 1\).

 

b) Xét phương trình hoành độ giao điểm giữa (P) và (d) ta có:

\( - \dfrac{1}{4}{x^2} = \dfrac{1}{2}x - 2 \)

\(\Leftrightarrow {x^2} + 2x - 8 = 0\,\,\left( * \right)\)

Ta có \(\Delta ' = {1^2} - 1.\left( { - 8} \right) = 9 > 0 \Rightarrow \) Phương trình (*) có 2 nghiệm phân biệt

\(\left\{ \begin{array}{l}{x_1} = \dfrac{{ - 1 + 3}}{1} = 2 \Rightarrow {y_1} =  - 1 \Rightarrow A\left( {2; - 1} \right)\\{x_2} = \dfrac{{ - 1 - 3}}{1} =  - 4 \Rightarrow {y_2} =  - 4 \Rightarrow B\left( { - 4; - 4} \right)\end{array} \right.\)

Vậy (d) cắt (P) tại 2 điểm phân biệt \(A\left( {2; - 1} \right)\) và \(B\left( { - 4; - 4} \right)\).

 Loigiaihay.com

Các bài liên quan: - Ôn tập cuối năm – Đại số 9

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com

Góp ý Loigiaihay.com, nhận quà liền tay