Bài 22 trang 141 Tài liệu dạy – học Toán 9 tập 2

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Cho phương trình

Đề bài

Cho phương trình \({x^2} - 2(m - 1)x + 2m - 5 = 0\)  (1) với x là ẩn số.

a) Chứng minh rằng phương trình luôn có hai nghiệm phân biệt với mọi giá trị của m.

b) Tìm điều kiện của m để phương trình có hai nghiệm trái dấu.

c) Tìm GTLN của \(A = 4{x_1}{x_2} - x_1^2 - x_2^2\) .

Phương pháp giải - Xem chi tiết

a) Chứng minh \(\Delta ' > 0\,\,\forall m\).

b) Tìm điều kiện để \(ac < 0\).

c) Áp dụng định lí Vi-ét, biểu diễn biểu thức A theo m, đưa biểu thức A về dạng \(A =  - {f^2}\left( m \right) + k\), khi đó \(A \le k\,\,\forall m \Rightarrow {A_{\max }} = k\).

Lời giải chi tiết

a) Ta có: \(\Delta ' = {\left( {m - 1} \right)^2} - 1\left( {2m - 5} \right) \)\(\,= {m^2} - 2m + 1 - 2m + 5 \)\(\,= {m^2} - 4m + 6\)

\( \Rightarrow \Delta ' = {m^2} - 4m + 4 + 2 \)\(\,= {\left( {m - 2} \right)^2} + 2\).

Ta có: \({\left( {m - 2} \right)^2} \ge 0\,\,\forall m\)

\(\Rightarrow {\left( {m - 2} \right)^2} + 2 \ge 2 > 0\,\,\forall m\)

\(\Rightarrow \Delta ' > 0\,\,\forall m\).

Vậy phương trình đã cho luôn có 2 nghiệm phân biệt với mọi giá trị của m.

b) Phương trình có 2 nghiệm trái dấu

\( \Leftrightarrow ac < 0 \Leftrightarrow 1\left( {2m - 5} \right) < 0\)

\(\Leftrightarrow 2m < 5 \Leftrightarrow m < \dfrac{5}{2}\).

c) Gọi \({x_1};{x_2}\) là 2 nghiệm phân biệt của phương trình.

Áp dụng định lí Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2\left( {m - 1} \right)\\{x_1}{x_2} = 2m - 5\end{array} \right.\).

Ta có:

\(A = 4{x_1}{x_2} - x_1^2 - x_2^2 \)

\(\;\;\;= 4{x_1}{x_2} - \left( {x_1^2 + x_2^2} \right)\)

\(\;\;\;= 6{x_1}{x_2} - \left( {x_1^2 + 2{x_1}{x_2} + x_2^2} \right) \)

\(\;\;\;= 6{x_1}{x_2} - {\left( {{x_1} + {x_2}} \right)^2}\)

\(\begin{array}{l} \Rightarrow A = 6\left( {2m - 5} \right) - 4{\left( {m - 1} \right)^2}\\\,\,\,\,\,\,A = 12m - 30 - 4{m^2} + 8m - 4\\\,\,\,\,\,\,A =  - 4{m^2} + 20m - 34\\\,\,\,\,\,\,A =  - \left( {4{m^2} - 20m} \right) - 34\\\,\,\,\,\,\,A =  - \left[ {{{\left( {2m} \right)}^2} - 2.2m.5 + {5^2}} \right] + {5^2} - 34\\\,\,\,\,\,\,A =  - {\left( {2m - 5} \right)^2} - 9\end{array}\)

Ta có \({\left( {2m - 5} \right)^2} \ge 0 \Rightarrow  - {\left( {2m - 5} \right)^2} \le 0\) \( \Rightarrow  - {\left( {2m - 5} \right)^2} - 9 \le  - 9\)

\( \Rightarrow A \le  - 9 \Rightarrow {A_{\max }} =  - 9\).

Dấu “=” xảy ra \( \Leftrightarrow 2m - 5 = 0 \Leftrightarrow m = \dfrac{5}{2}\).

 Loigiaihay.com

Các bài liên quan: - Ôn tập cuối năm – Đại số 9

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com

Góp ý Loigiaihay.com, nhận quà liền tay