Giải bài tập Tài liệu Dạy - học Toán lớp 9, Phát triển tư duy đột phá trong dạy học Toán 9
Ôn tập cuối năm – Đại số 9
Bài 5 trang 139 Tài liệu dạy – học Toán 9 tập 2>
Giải bài tập Tìm giá trị của a và b để đường thẳng (d): y = (2b – a)x – 3(a+5b) đi qua hai điểm:
Đề bài
Tìm giá trị của a và b để đường thẳng (d): y = (2b – a)x – 3(a+5b) đi qua hai điểm:
a) A(2 ; 4) và B(-1 ; 3)
b) M(2 ; 1) và N(1 ; -2)
Phương pháp giải - Xem chi tiết
Thay lần lượt tọa độ các điểm mà đường thẳng đi qua vào đường thẳng, giải hệ phương trình tìm a, b.
Lời giải chi tiết
a) \(A\left( {2;4} \right) \in d \Rightarrow 4 = \left( {2b - a} \right).2 - 3\left( {a + 5b} \right) \)
\(\Leftrightarrow 4 = 4b - 2a - 3a - 15b \)
\(\Leftrightarrow - 5a - 11b = 4\,\,\,\left( 1 \right)\)
\(B\left( { - 1;3} \right) \in d \Rightarrow 3 = \left( {2b - a} \right)\left( { - 1} \right) - 3\left( {a + 5b} \right) \)
\(\Leftrightarrow 3 = - 2b + a - 3a - 15b \)
\(\Leftrightarrow - 2a - 17b = 3\,\,\left( 2 \right)\)
Từ (1) và (2) ta có hệ phương trình
\(\begin{array}{l}\left\{ \begin{array}{l} - 5a - 11b = 4\\ - 2a - 17b = 3\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} - 10a - 22b = 8\\ - 10a - 85b = 15\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}63b = - 7\\ - 5a - 11b = 4\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}b = - \dfrac{1}{9}\\ - 5a - 11.\dfrac{{ - 1}}{9} = 4\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}b = - \dfrac{1}{9}\\5a = \dfrac{{ - 25}}{9}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = - \dfrac{1}{9}\\a = \dfrac{{ - 5}}{9}\end{array} \right.\end{array}\)
Vậy \(a = - \dfrac{5}{9};\,\,b = - \dfrac{1}{9}\).
b) \(M\left( {2;1} \right) \in d \Rightarrow 1 = \left( {2b - a} \right).2 - 3\left( {a + 5b} \right)\)
\(\Leftrightarrow 1 = 4b - 2a - 3a - 15b\)
\(\Leftrightarrow - 5a - 11b = 1\,\,\,\left( 1 \right)\)
\(N\left( {1; - 2} \right) \in d \Rightarrow - 2 = \left( {2b - a} \right).1 - 3\left( {a + 5b} \right) \)
\(\Leftrightarrow - 2 = 2b - a - 3a - 15b\)
\(\Leftrightarrow - 4a - 13b = - 2\,\,\left( 2 \right)\)
Từ (1) và (2) ta có hệ phương trình
\(\begin{array}{l}\left\{ \begin{array}{l} - 5a - 11b = 1\\ - 4a - 13b = - 2\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} - 20a - 44b = 4\\ - 20a - 65b = - 10\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}21b = 14\\ - 5a - 11b = 1\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}b = \dfrac{2}{3}\\ - 5a - 11.\dfrac{2}{3} = 1\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}b = \dfrac{2}{3}\\5a = \dfrac{{ - 25}}{3}\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}b = \dfrac{2}{3}\\a = \dfrac{{ - 5}}{3}\end{array} \right.\end{array}\)
Vậy \(a = - \dfrac{5}{3};\,\,b = \dfrac{2}{3}\).
Loigiaihay.com




