Bài 21 trang 141 Tài liệu dạy – học Toán 9 tập 2

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Cho phương trình

Đề bài

Cho phương trình \({x^2} - 2(m + 1)x + m - 4 = 0\) (1) với x là ẩn số.

a) Giải phương trình (1) khi m = -5.

b) Chứng minh phương trình (1) luôn có hai nghiệm phân biệt x1, x2 với mọi giá trị của m.

c) Tìm GTNN của biểu thức \(M = \left| {{x_1} - {x_2}} \right|\).

Phương pháp giải - Xem chi tiết

a) Thay \(m =  - 5\) và giải phương trình.

b) Chứng minh \(\Delta ' > 0\,\,\forall m\).

c) \(M = \left| {{x_1} - {x_2}} \right| = \sqrt {{{\left( {{x_1} - {x_2}} \right)}^2}}  \)\(\,= \sqrt {{{\left( {{x_1} + {x_2}} \right)}^2} - 4{x_1}{x_2}} \). Sử dụng định lí Vi-ét.

Lời giải chi tiết

a) Thay \(m =  - 5\) vào phương trình ta có \({x^2} + 8x - 9 = 0\).

Ta có \(1 + 8 - 9 = 0 \Rightarrow \) Phương trình có 2 nghiệm phân biệt \(\left[ \begin{array}{l}{x_1} = 1\\{x_2} =  - 9\end{array} \right.\).

b) Ta có \(\Delta ' = {\left( {m + 1} \right)^2} - 1\left( {m - 4} \right)\)\(\, = {m^2} + 2m + 1 - m + 4\)\(\, = {m^2} + m + 5\)

Ta có \({m^2} + m + 5 \)\(\,= {m^2} + 2.m.\dfrac{1}{2} + {\left( {\dfrac{1}{2}} \right)^2} + \dfrac{{19}}{4} \)\(\,= {\left( {m + \dfrac{1}{2}} \right)^2} + \dfrac{{19}}{4} > 0 \Rightarrow \Delta ' > 0 \Rightarrow \) Phương trình có 2 nghiệm phân biệt \({x_1};{x_2}\) với mọi giá trị của m.

c) Ta có \(M = \left| {{x_1} - {x_2}} \right| = \sqrt {{{\left( {{x_1} - {x_2}} \right)}^2}} \)\(\, = \sqrt {{{\left( {{x_1} + {x_2}} \right)}^2} - 4{x_1}{x_2}} \)

Áp dụng định lí Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2\left( {m + 1} \right)\\{x_1}{x_2} = m - 4\end{array} \right.\)

\(\begin{array}{l} \Rightarrow M = \sqrt {4{{\left( {m + 1} \right)}^2} - 4\left( {m - 4} \right)}  \\\;\;\;\;\;\;\;\;\;= \sqrt {4{m^2} + 8m + 4 - 4m + 16} \\\;\;\;\;\;\;\;\;\; = \sqrt {4{m^2} + 4m + 20} \\ \Rightarrow M = \sqrt {4{m^2} + 4m + 1 + 19} \\\;\;\;\;\;\;\;\;\;\; = \sqrt {{{\left( {2m + 1} \right)}^2} + 19} \end{array}\)

Ta có \({\left( {2m + 1} \right)^2} \ge 0 \) \(\Rightarrow {\left( {2m + 1} \right)^2} + 19 \ge 19 \Rightarrow M \ge \sqrt {19} \).

Vậy GTNN của M bằng \(\sqrt {19} \).

Dấu “=” xảy ra \( \Leftrightarrow 2m + 1 = 0 \Leftrightarrow m =  - \dfrac{1}{2}\). 

 Loigiaihay.com

Các bài liên quan: - Ôn tập cuối năm – Đại số 9

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com

Góp ý Loigiaihay.com, nhận quà liền tay