Bài 48 trang 22 SGK Toán 8 tập 1

Bình chọn:
4.4 trên 171 phiếu

Giải bài 48 trang 22 SGK Toán 8 tập 1. Phân tích các đa thức sau thành nhân tử:

Đề bài

 Phân tích các đa thức sau thành nhân tử:

a) \({x^2} + 4x - {y^2} + 4\);

b) \(3{x^2} + 6xy + 3{y^2} - 3{z^2}\);

c) \({x^2} - 2xy + {y^2} - {z^2} + 2zt - {t^2}\).

Phương pháp giải - Xem chi tiết

- Áp dụng phân tích đa thức thành nhân tử bằng phương pháp nhóm các hạng tử và phương pháp dùng hằng đẳng thức.

- Áp dụng các hằng đẳng thức:

\({\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\)

\({\left( {A - B} \right)^2} = {A^2} - 2AB + {B^2}\)

\({A^2} - {B^2} = \left( {A - B} \right)\left( {A + B} \right)\)

Lời giải chi tiết

\(\eqalign{
&a)\; {x^2} + 4x - {y^2} + 4 \cr
& = ({x^2} + 4x + 4) - {y^2} \cr
& = \left( {{x^2} + 2.x.2 + {2^2}} \right) - {y^2} \cr
& = {\left( {x + 2} \right)^2} - {y^2} \cr
& = \left( {x + 2 - y} \right)\left( {x + 2 + y} \right) \cr} \)

\(\eqalign{
& b)\,\,3{x^2} + 6xy + 3{y^2} - 3{z^2} \cr
& = 3.\left( {{x^2} + 2xy + {y^2} - {z^2}} \right) \cr
& = 3.\left[ {\left( {{x^2} + 2xy + {y^2}} \right) - {z^2}} \right] \cr
& = 3.\left[ {{{\left( {x + y} \right)}^2} - {z^2}} \right] \cr
& = 3\left( {x + y - z} \right)\left( {x + y + z} \right) \cr} \)

\(\eqalign{
& c)\,\,{x^2} - 2xy + {y^2} - {z^2} + 2zt - {t^2} \cr
& = \left( {{x^2} - 2xy + {y^2}} \right) + \left( { - {z^2} + 2zt - {t^2}} \right) \cr
& = \left( {{x^2} - 2xy + {y^2}} \right) - \left( {{z^2} - 2zt + {t^2}} \right) \cr
& = {\left( {x - y} \right)^2} - {\left( {z - t} \right)^2} \cr
& = \left[ {\left( {x - y} \right) - \left( {z - t} \right)} \right].\left[ {\left( {x - y} \right) + \left( {z - t} \right)} \right] \cr
& = \left( {x - y - z + t} \right)\left( {x - y + z - t} \right) \cr} \)

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 8 - Xem ngay

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com