

Bài 22 trang 46 SGK Toán 8 tập 1>
Áp dụng quy tắc đổi dấu để các phân thức có cùng mẫu thức rồi làm tính cộng phân thức.
GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT
Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn
Video hướng dẫn giải
Áp dụng quy tắc đổi dấu để các phân thức có cùng mẫu thức rồi làm tính cộng phân thức:
LG a.
\( \dfrac{2x^{2}-x}{x-1}+\dfrac{x+1}{1-x}+\dfrac{2-x^{2}}{x-1}\);
Phương pháp giải:
Áp dụng quy tắc đổi dấu, quy tắc cộng hai phân thức cùng mẫu.
\(A=-(-A)\)
\(\dfrac{A}{B} = \dfrac{{ - A}}{{ - B}}\)
\( \dfrac{A}{B}+\dfrac{C}{B}=\dfrac{A+C}{B}\)
Lời giải chi tiết:
\( \dfrac{2x^{2}-x}{x-1}+\dfrac{x+1}{1-x}+\dfrac{2-x^{2}}{x-1}\)
\(= \dfrac{2x^{2}-x}{x-1}+\dfrac{-(x+1)}{-(1-x)}+\dfrac{2-x^{2}}{x-1}\)
\(=\dfrac{2x^{2}-x}{x-1}+\dfrac{-x-1}{x-1}+\dfrac{2-x^{2}}{x-1}\)
\(=\dfrac{2x^{2}-x-x-1+2-x^{2}}{x-1}\)
\(=\dfrac{x^{2}-2x+1}{x-1}=\dfrac{{{{\left( {x - 1} \right)}^2}}}{{x - 1}}=x-1\)
LG b.
\( \dfrac{4-x^{2}}{x-3}+\dfrac{2x-2x^{2}}{3-x}+\dfrac{5-4x}{x-3}\).
Phương pháp giải:
Áp dụng quy tắc đổi dấu, quy tắc cộng hai phân thức cùng mẫu.
\(A=-(-A)\)
\(\dfrac{A}{B} = \dfrac{{ - A}}{{ - B}}\)
\( \dfrac{A}{B}+\dfrac{C}{B}=\dfrac{A+C}{B}\)
Lời giải chi tiết:
\( \dfrac{4-x^{2}}{x-3}+\dfrac{2x-2x^{2}}{3-x}+\dfrac{5-4x}{x-3}\)
\( =\dfrac{4-x^{2}}{x-3}+\dfrac{-(2x-2x^{2})}{-(3-x)}+\dfrac{5-4x}{x-3}\)
\( =\dfrac{4-x^{2}}{x-3}+\dfrac{2x^{2}-2x}{x-3}+\dfrac{5-4x}{x-3}\)
\( =\dfrac{4-x^{2}+2x^{2}-2x+5-4x}{x-3}\)
\(=\dfrac{x^{2}-6x+9}{x-3}=\dfrac{{{x^2} - 2.x.3 + {3^2}}}{{x - 3}}\)
\( =\dfrac{(x-3)^{2}}{x-3}= x-3\)
Loigiaihay.com

