Bài 19 trang 43 SGK Toán 8 tập 1


Quy đồng mẫu thức các phân thức sau:

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Quy đồng mẫu thức các phân thức sau:

LG a.

\(\dfrac{1}{{x + 2}},\dfrac{8}{{2x - {x^2}}}\)

Phương pháp giải:

Áp dụng quy tắc quy đồng mẫu thức:

Muốn quy đồng mẫu thức nhiều phân thức ta có thể làm như sau:

- Phân tích các mẫu thức thành nhân tử rồi tìm mẫu thức chung.

- Tìm nhân tử phụ của mỗi mẫu thức.

- Nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng.

Lời giải chi tiết:

+ Phân tích mẫu thức thành nhân tử để tìm MTC 

 \(2x – x^2 = x.(2 – x)\)

MTC = \(x\left( {2 - x} \right)\left( {2 + x} \right)\)

+ Nhân tử phụ :

\(x.(2-x)(x+2) : (x + 2) = x.(2 – x)\)

 \(x(2-x)(x+2) : [x(2 – x)] = x + 2\)

+ Quy đồng:

\(\dfrac{1}{{x + 2}} = \dfrac{1}{{2 + x}} = \dfrac{{x\left( {2 - x} \right)}}{{x\left( {2 - x} \right)\left( {2 + x} \right)}}\)\(\, = \dfrac{{2x - {x^2}}}{{x(2 - x)(2 + x)}}\)

\(\dfrac{8}{{2x - {x^2}}} = \dfrac{{8.(2 + x)}}{{x(2 - x)(2 + x)}}\)\(\, = \dfrac{{16 + 8x}}{{x(2 - x)(2 + x)}}\)

LG b.

\({x^2} + 1,\dfrac{{{x^4}}}{{{x^2} - 1}}\)

Phương pháp giải:

Áp dụng quy tắc quy đồng mẫu thức:

Muốn quy đồng mẫu thức nhiều phân thức ta có thể làm như sau:

- Phân tích các mẫu thức thành nhân tử rồi tìm mẫu thức chung.

- Tìm nhân tử phụ của mỗi mẫu thức.

- Nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng.

Lời giải chi tiết:

MTC = \({x^2} - 1\)

Quy đồng: 

\({x^2} + 1 = \dfrac{{{x^2} + 1}}{1} = \dfrac{{\left( {{x^2} + 1} \right)\left( {{x^2} - 1} \right)}}{{{x^2} - 1}} = \dfrac{{{x^4} - 1}}{{{x^2} - 1}}\)

\(\dfrac{{{x^4}}}{{{x^2} - 1}}\) giữ nguyên.

LG c.

\(\dfrac{{{x^3}}}{{{x^3} - 3{x^2}y + 3x{y^2} - {y^3}}},\dfrac{x}{{{y^2} - xy}}\)

Phương pháp giải:

Áp dụng quy tắc quy đồng mẫu thức:

Muốn quy đồng mẫu thức nhiều phân thức ta có thể làm như sau:

- Phân tích các mẫu thức thành nhân tử rồi tìm mẫu thức chung.

- Tìm nhân tử phụ của mỗi mẫu thức.

- Nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng.

Lời giải chi tiết:

Ta có: \(\dfrac{x}{{{y^2} - xy}} = \dfrac{-x}{{xy-y^2}}\) 

+ Phân tích mẫu thức thành nhân tử: 

\({x^3} - 3{x^2}y + 3x{y^2} - {y^3} = {\left( {x - y} \right)^3}\)

\(xy-{y^2}  = y\left( {x - y} \right) \)

 MTC = \(y{\left( {x - y} \right)^3}\)

+ Nhân tử phụ :

 \(y(x – y)^3 : (x – y)^3 = y\)

 \(y(x – y)^3 : [y(x – y)] = (x – y)^2\)

+ Quy đồng mẫu thức :

\(\dfrac{{{x^3}}}{{{x^3} - 3{x^2}y + 3x{y^2} - {y^3}}} = \dfrac{{{x^3}}}{{{{\left( {x - y} \right)}^3}}} \)\(\,= \dfrac{{{x^3}y}}{{y{{\left( {x - y} \right)}^3}}}\)

\(\dfrac{x}{{{y^2} - xy}} = \dfrac{-x}{{xy-y^2}} \)\(\, = \dfrac{{ - x}}{{y\left( {x - y} \right)}} = \dfrac{{ - x{{\left( {x - y} \right)}^2}}}{{y(x-y).{{(x - y)}^2}}}\)\(= \dfrac{{ - x{{\left( {x - y} \right)}^2}}}{{y{{(x - y)}^3}}}\)

Loigiaihay.com


Bình chọn:
4.3 trên 169 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Xem ngay

Tham Gia Group Dành Cho Lớp 8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí