Bài 1 trang 36 SGK Toán 8 tập 1

Bình chọn:
4.9 trên 78 phiếu

Giải bài 1 trang 36 SGK Toán 8 tập 1. Dùng định nghĩa hai phân thức bằng nhau chứng tỏ rằng:

Đề bài

Dùng định nghĩa hai phân thức bằng nhau chứng tỏ rằng:

a) \( \frac{5y}{7}= \frac{20xy}{28x}\);                              b) \( \frac{3x(x + 5)}{2(x + 5)}= \frac{3x}{2}\)

c) \( \frac{x + 2}{x - 1}= \frac{(x + 2)(x + 1)}{x^{2} - 1}\);             d) \( \frac{x^{2} - x - 2}{x + 1}= \frac{x^{2}- 3x + 2}{x - 1}\)

e) \( \frac{x^{3}+ 8 }{x^{2}- 2x + 4}= x + 2\);

Phương pháp giải - Xem chi tiết

Áp dụng định nghĩa hai phân thức bằng nhau: \( \frac{A}{B}\) = \( \frac{C}{D}\) nếu AD = BC

Lời giải chi tiết

a) \( \left.\begin{matrix} 5y.28x = 140xy\\ 7.20xy = 140xy \end{matrix}\right\}\) \(\Rightarrow 5y.28x = 7.20xy\)

nên \( \frac{5y}{7}= \frac{20xy}{28x}\)

b) \(3x(x + 5).2 = 3x.2(x + 5) \)\(= 6x(x + 5)\)

nên \( \frac{3x(x + 5)}{2(x +5)}= \frac{3x}{2}\)

c) \( \frac{x + 2}{x - 1}= \frac{(x + 2)(x + 1)}{x^{2} - 1}\)

Vì \((x + 2)(x^2- 1) \)\(= (x + 2)(x + 1)(x - 1)\).

d) 

\(\left( {{x^2} - x - 2} \right)\left( {x - 1} \right) \)\(= {x^2}.x + {x^2}.( - 1) + ( - x).x \)\(+ ( - x).( - 1) + ( - 2).x + ( - 2).( - 1) \)\(= {x^3} - {x^2} - {x^2} + x - 2x + 2 \)\(= {x^3} - 2{x^2} - x + 2\)

\(\left( {x + 1} \right)\left( {{x^2} - 3x + 2} \right) \)\(= x.{x^2} + x.\left( { - 3x} \right) + x.2 + 1.{x^2} \)\(+ 1.\left( { - 3x} \right) + 1.2 \)\(= {x^3} - 3{x^2} + 2x + {x^2} - 3x + 2 \)\(= {x^3} - 2{x^2} - x + 2\)

\(\Rightarrow \left( {{x^2} - x - 2} \right)\left( {x - 1} \right)=\)\( \left( {x + 1} \right)\left( {{x^2} - 3x + 2} \right)\)

Vậy  \( \frac{x^{2} - x - 2}{x + 1}= \frac{x^{2}- 3x + 2}{x - 1}\)

e) \( \frac{x^{3}+ 8 }{x^{2}- 2x + 4}= x + 2\)

Vì \(x^3+ 8 = x^3+ 2^3\)\(= (x + 2)(x^2– 2x + 4)\)

loigiaihay.com

 

Luyện Bài tập trắc nghiệm môn Toán lớp 8 - Xem ngay

>>Học trực tuyến các môn học lớp 8, mọi lúc, mọi nơi môn Toán, Văn, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan