Trả lời câu hỏi 3 Bài 3 trang 15 SGK toán 9 tập 2


Cho hệ phương trình:...

Đề bài

Cho hệ phương trình: 

\(\left( {IV} \right):\left\{ \begin{array}{l}
4x + y = 2\\
8x + 2y = 1
\end{array} \right.\)

Bằng minh họa hình học và phương pháp thế, chứng tỏ rằng hệ (IV) vô nghiệm. 

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Biến đổi để đưa hai phương trình về dạng của hai đường thẳng song song với nhau.

Từ đó vẽ các đường thẳng để chứng tỏ hệ vô nghiệm.

Lời giải chi tiết

Bằng hình học:

Ta có: 

\(\begin{array}{l}
\left\{ \begin{array}{l}
4x + y = 2\\
8x + 2y = 1
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
y = - 4x + 2\\
2y = - 8x + 1
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
y = - 4x + 2\\
y = - 4x + \dfrac{1}{2}
\end{array} \right.
\end{array}\)

Vẽ hai đường thẳng \(y=-4x+2\) và \(y = - 4x + \dfrac{1}{2}\) ta thấy hai đường thẳng này không có điểm chung nên hệ phương trình vô nghiệm.

Bằng phương pháp thế:

\(\begin{array}{l}
\left\{ \begin{array}{l}
4x + y = 2\\
8x + 2y = 1
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
y = 2 - 4x\\
8x + 2\left( {2 - 4x} \right) = 1
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
y = 2 - 4x\\
8x + 4 - 8x = 1
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
y = 2 - 4x\\
4 = 1\left( {vô\,lý} \right)
\end{array} \right.
\end{array}\)

Vậy hệ phương trình đã cho vô nghiệm.

Loigiaihay.com


Bình chọn:
4.3 trên 16 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Xem ngay

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí