Bài 19 trang 16 SGK Toán 9 tập 2

Bình chọn:
4.2 trên 42 phiếu

Giải bài 19 trang 16 SGK Toán 9 tập 2. Biết rằng: Đa thức P(x) chia hết cho đa thức x - a khi và chỉ khi P(a) = 0.

Đề bài

Biết rằng: Đa thức \(P(x)\) chia hết cho đa thức \(x - a\) khi và chỉ khi \(P(a) = 0\).

Hãy tìm các giá trị của \(m\) và \(n\) sao cho đa thức sau đồng thời chia hết cho \(x + 1\) và  \(x - 3\):

\(P(x) = m{x^3} + (m - 2){x^2} - (3n - 5)x - 4n\)

Phương pháp giải - Xem chi tiết

 Sử dụng tính chất: 

+) \(P(x)\) chia hết cho \((x - a)\) khi và chỉ khi \(P(a) = 0\)

+) \(P(x)\) chia hết cho \((x+a)\) khi và chỉ khi \(P(-a)=0\).

+) Thay các giá trị nghiệm vào đa thức \(P(x)\), ta thu được các phương trình bậc nhất hai ẩn. Lập hệ và giải hệ đó.

Lời giải chi tiết

+) Ta có: \(P(x)\) chia hết cho \(x + 1 \Leftrightarrow P(-1)=0\)

\(\Leftrightarrow m.(-1)^3 + (m - 2).(-1)^2 - (3n - 5).(-1)\)

\(- 4n=0 \)

\( \Leftrightarrow -m + m - 2 + 3n - 5 - 4n = 0\)

\(\Leftrightarrow -n-7=0\)  

\( \Leftrightarrow n+7=0\)    (1)

+) Lại có: \(P(x)\) chia hết cho \(x - 3 \Leftrightarrow P(3)=0\)

\(\Leftrightarrow m.3^3 + (m - 2).3^2 - (3n - 5).3 - 4n=0 \)

\(\Leftrightarrow  27m + 9(m - 2) - 3(3n - 5) - 4n = 0\)

\(\Leftrightarrow  27m + 9m - 18 - 9n + 15 - 4n = 0\)

\(\Leftrightarrow  36m-13n=3\)  (2)

Từ (1) và (2), ta có hệ phương trình ẩn \(m\) và \(n\).

\(\left\{\begin{matrix}  n+7 = 0 & & \\ 36m - 13n = 3 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} n = -7 & & \\ 36m -13.(-7)= 3 & & \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} n = -7 & & \\ 36m = -88 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} n = -7& & \\ m = \dfrac{-22}{9}& & \end{matrix}\right.\)

Vậy \(m=\dfrac{-22}{9},\ n=-7\). 

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com