
Đề bài
a) Xác định các hệ số \(a\) và \(b\), biết rằng hệ phương trình
\(\left\{\begin{matrix} 2x + by=-4 & & \\ bx - ay=-5& & \end{matrix}\right.\)
có nghiệm là \((1; -2)\)
b) Cũng hỏi như vậy, nếu hệ phương trình có nghiệm là \((\sqrt{2} - 1; \sqrt{2})\).
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
a) Thay \(x=1,\ y=-2\) vào hệ ban đầu ta được hệ hai phương trình bậc nhất hai ẩn \(a,\ b\).
Giải hệ mới ta tìm được \(a,\ b\).
b) Thay \(x=\sqrt{2} - 1; y=\sqrt{2}\) vào hệ ban đầu ta được hệ hai phương trình bậc nhất hai ẩn \(a,\ b\).
Giải hệ mới ta tìm được \(a,\ b\).
Lời giải chi tiết
a) Hệ phương trình có nghiệm là \((1; -2)\) khi và chỉ khi \((1; -2)\) thỏa mãn hệ phương trình. Thay \(x=1,\ y=-2\) vào hệ, ta có:
\(\left\{\begin{matrix} 2 - 2b=-4 & & \\ b+2a=-5 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} 2b=6 & & \\ b+2a=-5 & & \end{matrix}\right. \)
\( \Leftrightarrow \left\{\begin{matrix} b=3 & & \\ b+2a=-5 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} b=3 & & \\ 3+2a=-5 & & \end{matrix}\right. \)
\(\Leftrightarrow \left\{\begin{matrix} b=3 & & \\ 2a = -5 - 3& & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} b=3 & & \\ 2a = -8& & \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} b=3 & & \\ a = -4 & & \end{matrix}\right.\)
Vậy \(a=-4,\ b=3\) thì hệ có nghiệm là \((1; -2)\).
b) Thay \(x=\sqrt 2 - 1;\ y= \sqrt 2\) vào hệ phương trình đã cho, ta có:
\(\left\{\begin{matrix} 2(\sqrt{2}-1)+b\sqrt{2}= -4 & & \\ (\sqrt{2}-1)b - a\sqrt{2}= -5& & \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} 2\sqrt{2}-2+b\sqrt{2}= -4 & & \\ (\sqrt{2}-1)b - a\sqrt{2}= -5& & \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} 2\sqrt{2}-2+b\sqrt{2}= -4 & & \\ (\sqrt{2}-1)b - a\sqrt{2}= -5& & \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} b\sqrt{2}= -2 - 2\sqrt{2} & & \\ (\sqrt{2}-1)b - a\sqrt{2}= -5& & \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} b= -(2 + \sqrt{2}) & & \\ a\sqrt{2}= -(2 + \sqrt{2})(\sqrt{2}-1)+5& & \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} b= -(2 + \sqrt{2}) & & \\ a\sqrt{2}= -\sqrt{2}+5& & \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} a = \dfrac{-2+5\sqrt{2}}{2} & & \\ b = -(2+ \sqrt{2})& & \end{matrix}\right.\)
Vậy \(a = \dfrac{-2+5\sqrt{2}}{2},\ b=-(2+ \sqrt{2})\) thì hệ trên có nghiệm là \((\sqrt 2 -1; \sqrt 2)\).
loigiaihay.com
Giải bài 19 trang 16 SGK Toán 9 tập 2. Biết rằng: Đa thức P(x) chia hết cho đa thức x - a khi và chỉ khi P(a) = 0.
Giải Đề kiểm tra 15 phút - Đề số 1 - Bài 3 - Chương 3 - Đại số 9
Giải Đề kiểm tra 15 phút - Đề số 2 - Bài 3 - Chương 3 - Đại số 9
Giải Đề kiểm tra 15 phút - Đề số 3 - Bài 3 - Chương 3 - Đại số 9
Giải Đề kiểm tra 15 phút - Đề số 4 - Bài 3 - Chương 3 - Đại số 9
Giải bài 17 trang 16 SGK Toán 9 tập 2. Giải hệ phương trình sau bằng phương pháp thế.
Giải bài 16 trang 16 SGK Toán 9 tập 2. Giải các hệ phương trình sau bằng phương pháp thế.
Giải hệ phương trình
Giải bài 14 trang 15 SGK Toán 9 tập 2. Giải các hệ phương trình bằng phương pháp thế:
Giải các hệ phương trình sau bằng phương pháp thế:
Giải bài 12 trang 15 SGK Toán 9 tập 2. Giải các hệ phương trình sau bằng phương pháp thế:
Cho hệ phương trình:...
Bằng minh họa hình học, hãy giải thích tại sao hệ (III) có vô số nghiệm.
Trả lời câu hỏi Bài 3 trang 14 Toán 9 Tập 2. Giải hệ phương trình sau bằng phương pháp thế (biểu diễn y theo x từ phương trình thứ hai của hệ
>> Xem thêm
Các bài khác cùng chuyên mục
Cảm ơn bạn đã sử dụng Loigiaihay.com. Đội ngũ giáo viên cần cải thiện điều gì để bạn cho bài viết này 5* vậy?
Vui lòng để lại thông tin để ad có thể liên hệ với em nhé!
Họ và tên:
Email / SĐT: