Bài 15 trang 15 SGK Toán 9 tập 2

Bình chọn:
4.3 trên 40 phiếu

Giải bài 15 trang 15 SGK Toán 9 tập 2. Giải hệ phương trình

Đề bài

Giải hệ phương trình \(\left\{\begin{matrix} x + 3y = 1 & & \\ (a^{2} + 1)x + 6y = 2a & & \end{matrix}\right.\) trong mỗi trường hợp sau:

a) \(a = -1\);             b) \(a = 0\);              c) \(a = 1\).

Phương pháp giải - Xem chi tiết

+) Thay từng giá trị của \(a\) vào hệ phương trình đã cho.

+) Dùng quy tắc thế biến đổi hệ phương trình thu được để có một hệ phương trình mới trong đó có một phương trình một ẩn.

+) Giải phương trình một ẩn vừa có rồi suy ra nghiệm của hệ.

Lời giải chi tiết

a) Thay \(a = -1\) vào hệ, ta được:

\(\left\{\begin{matrix} x + 3y = 1 & & \\ {\left((-1)^2+1 \right)}x+ 6y = 2.(-1) & & \end{matrix}\right. \)

\(\Leftrightarrow \left\{\begin{matrix} x + 3y = 1 & & \\ 2x+ 6y = -2 & & \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x + 3y = 1 & & \\ x+ 3y = -1 & & \end{matrix}\right.  \Leftrightarrow \left\{\begin{matrix} x  = 1 -3y  & & \\ (1-3y)+ 3y = -1 & & \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x  = 1 -3y & & \\  1 = -1 (vô \ lý )& & \end{matrix}\right.\)

Vậy hệ phương trình trên vô nghiệm.

b) Thay \(a = 0\) vào hệ, ta được:

\(\left\{ \matrix{
x + 3y = 1 \hfill \cr
\left( {0 + 1} \right)x + 6y = 2.0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x + 3y = 1 \hfill \cr
x + 6y = 0 \hfill \cr} \right. \)

\(\Leftrightarrow \left\{ \matrix{
x + 3y = 1 \hfill \cr
x = - 6y \hfill \cr} \right.\)

\( \Leftrightarrow \left\{ \matrix{
- 6y + 3y = 1 \hfill \cr
x = - 6y \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
- 3y = 1 \hfill \cr
x = - 6y \hfill \cr} \right.\)

\( \Leftrightarrow \left\{ \matrix{
y = \dfrac{ - 1}{3} \hfill \cr
x = - 6y \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
y = \dfrac{ - 1}{3} \hfill \cr
x = - 6. \dfrac{ - 1}{3} \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
y = \dfrac{ - 1}{3} \hfill \cr
x = 2 \hfill \cr} \right.\)

Hệ phương trình có nghiệm \( {\left(2; -\dfrac{1}{3} \right)} \).

c) Thay \(a = 1\) vào hệ, ta được:

\(\left\{ \matrix{
x + 3y = 1 \hfill \cr
({1^2} + 1)x + 6y = 2.1 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x + 3y = 1 \hfill \cr
2x + 6y = 2 \hfill \cr} \right.\)

\(\Leftrightarrow \left\{ \matrix{
x + 3y = 1 \hfill \cr
x + 3y = 1 \hfill \cr} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}x = 1 - 3y\\1 - 3y + 3y = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1 - 3y\\1 = 1\left( {luôn\,đúng} \right)\end{array} \right.\)

 Vậy  hệ phương trình có vô số nghiệm \(\left\{ \begin{array}{l}x = 1 - 3y\\y \in \mathbb{R}\end{array} \right.\)

 

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com