Lý thuyết nhắc lại và bổ sung các khái niệm về hàm số


Nếu đại lượng y phụ thuộc vào một đại lượng thay đổi sao cho với mỗi giá trị...

1. Khái niệm hàm số 

* Định nghĩa: Nếu đại lượng y phụ thuộc vào một đại lượng thay đổi x sao cho với mỗi giá trị của x, ta luôn xác định được chỉ một giá trị tương ứng của y thì y được gọi là hàm số của x và x được gọi là biến số.

* Hàm số thường được kí hiệu bởi những chữ \(f, g, h...\), chẳng hạn khi y là một hàm số của biến số x, ta viết \(y = f(x)\) hoặc \(y = g(x),...\) 

+) \(f(a)\) là giá trị của hàm số \(y = f(x)\) tại \(x = a.\)

Khi hàm số y được cho bởi công thức y = f(x), muốn tính giá trị f(a) của hàm số tại x = a, ta thay x = a vào biểu thức f(x) rồi thực hiện các phép tính trong biểu thức.

+) Khi x thay đổi mà y luôn nhận một giá trị không đổi thì y được gọi là một hàm hằng.

2. Đồ thị của hàm số 

Tập hợp các điểm biểu diễn các cặp giá trị tương ứng (x; f(x)) trên mặt phẳng tọa độ được gọi là đồ thị của hàm số \(y = f(x).\)

3. Hàm số đồng biến, hàm số nghịch biến 

Cho hàm số y = f(x) xác định với mọi giá trị của x thuộc tập số thực R. Với x1, x2 túy ý thuộc R:

a) Nếu x1< x2  mà f(x1 ) < f(x2 ) thì hàm số y=f(x) được gọi là hàm đồng biến trên \(\mathbb R.\)

b) Nếu x1< x2 mà f(x1 ) > f(x2 ) thì hàm số y=f(x) được gọi là hàm nghịch biến trên \(\mathbb R.\)

4. Các dạng toán cơ bản

Dạng 1 : Tính giá trị của hàm số tại một điểm

Để tính giá trị \({y_0}\) của hàm số \(y = f\left( x \right)\) tại điểm \({x_0}\) ta thay \(x = {x_0}\) vào \(f\left( x \right)\), ta được \({y_0} = f\left( {{x_0}} \right)\).

Ví dụ: Giá trị của hàm số \(y = f\left( x \right) = 2x - 3\) tại \(x=2\) là \(f\left( 2 \right) = 2.2 - 3 = 1\)

Dạng 2 :  Xét sự đồng biến và nghịch biến của hàm số

Bước 1: Tìm tập xác định \(D\) của hàm số.

Bước 2: Giả sử \({x_1} < {x_2}\) và \({x_1},{x_2} \in D\). Xét hiệu \(H = f\left( {{x_1}} \right) - f\left( {{x_2}} \right)\).

+ Nếu \(H < 0\) thì hàm số đồng biến trên \(D\)

+ Nếu \(H > 0\) thì hàm số nghịch biến trên \(D\)

Ví dụ: Xét sự đồng biến, nghịch biến của hàm số \(y=f(x)=3x+1\)

Cách giải:

Hàm số xác định với mọi \(x\in \mathbb R\) 

Giả sử \({x_1} < {x_2}\) và \({x_1},{x_2} \in \mathbb R\)

Ta có:  

\(f\left( {{x_1}} \right) = 3{x_1}+1\)

\(f\left( {{x_2}} \right) = 3{x_2}+1\)

Suy ra \(f(x_1)-f(x_2)=3x_1+1-(3x_2+1)\)\(=3(x_1-x_2)<0\) (vì \(x_{1}  < x_{2} \) nên \(x_{1}  - x_{2}<0)\)

Hay \(f(x_1)<f(x_2)\) 

Vậy với \(x_{1} < x_{2}\) ta được \(f(x_1) < f(x_2)\) nên hàm số \(y =f(x)= 3x+1\) đồng biến trên \(\mathbb{R}\).

 Loigiaihay.com


Bình chọn:
4 trên 27 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>> Học trực tuyến lớp 9 và luyện vào lớp 10 tại Tuyensinh247.com. , cam kết giúp học sinh lớp 9 học tốt, hoàn trả học phí nếu học không hiệu quả.