Đề kiểm tra 15 phút - Đề số 2 - Bài 1 - Chương 2 - Đại số 9


Giải Đề kiểm tra 15 phút - Đề số 2 - Bài 1 - Chương 2 - Đại số 9

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Lựa chọn câu để xem lời giải nhanh hơn

Đề bài

Bài 1. Tìm tập xác định của mỗi hàm số:

a. \(y = {1 \over {\sqrt {x + 2} }}\) 

b. \(y = {1 \over x}\)

Bài 2. Cho hàm số \(y = f\left( x \right) = \sqrt {1 - x} .\) Tính : \(f\left( { - 1} \right);\,f\left( { - 3} \right);\,f\left( 3 \right)\)

Bài 3. Vẽ đồ thị hàm số \(y=-x\)

LG bài 1

Phương pháp giải:

Sử dụng \(\sqrt A \) xác định khi \(A\ge 0\)

\(\dfrac{1}{B}\) xác định khi \(B\ne 0\)

Lời giải chi tiết:

a. Hàm số \(y={1 \over {\sqrt {x + 2} }}\) xác định \( \Leftrightarrow \left\{ {\matrix{   {x + 2 \ge 0}  \cr   {x + 2 \ne 0}  \cr  } } \right. \) 

\(\Leftrightarrow x + 2 > 0 \Leftrightarrow x >  - 2\)

b. Hàm số \(y={1 \over x}\) xác định \( \Leftrightarrow x \ne 0\)

LG bài 2

Phương pháp giải:

Để tính giá trị \({y_0}\) của hàm số \(y = f\left( x \right)\) tại điểm \({x_0}\) ta thay \(x = {x_0}\) vào \(f\left( x \right)\), ta được \({y_0} = f\left( {{x_0}} \right)\).

Lời giải chi tiết:

Vì \(\sqrt {1 - x} \) xác định \( \Leftrightarrow 1 - x \ge 0 \Leftrightarrow x \le 1\) 

Vậy \(f(3)\) không tồn tại (do \(x=3\) không thỏa mãn điều kiện xác định)

Ta có: \(\eqalign{  & f\left( { - 1} \right) = \sqrt {1 - \left( { - 1} \right)}  = \sqrt 2   \cr  & f\left( { - 3} \right) = \sqrt {1 - \left( { - 3} \right)}  = \sqrt 4  = 2 \cr} \)

LG bài 3

Phương pháp giải:

Cách vẽ đồ thị của hàm số \(y = ax + b (a ≠ 0).\)

- Chọn điểm \(P(0; b)\) (trên trục \(Oy\)). 

- Chọn điểm \(Q\left( { - \dfrac{b}{a};0} \right)\) (trên trục \(Ox\)).

- Kẻ đường thẳng \(PQ\) ta được đồ thị của hàm số \(y=ax+b.\)

Lời giải chi tiết:

Bảng giá trị : 

       x

       0                 1

       y

       0                -1

Đồ thị của hàm số \(y = -x\) là đường thẳng qua hai điểm \(O(0; 0)\) và \(A(1; -1)\).

Loigiaihay.com


Bình chọn:
4.4 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Xem ngay

Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí