Đề kiểm tra 15 phút - Đề số 1 - Bài 1 - Chương 2 - Đại số 9


Giải Đề kiểm tra 15 phút - Đề số 1 - Bài 1 - Chương 2 - Đại số 9

Đề bài

Bài 1. Tìm điều kiện xác định của mỗi hàm số (Tìm tập xác định của hàm số) :

a. \(y = \sqrt { - x} \)

b. \(y = \sqrt {1 - x}  + \sqrt {1 + x} \)

Bài 2. Cho hàm số \(y = f\left( x \right) = {x^2} + 1.\) Tính : \(f\left( 0 \right);\,f\left( { - 2} \right);\,f\left( {\sqrt 2 } \right)\)

Bài 3. Chứng minh hàm số \(y = f\left( x \right) = 2x\) đồng biến trên \(\mathbb R\).

Lời giải chi tiết

Bài 1. a. \(\sqrt { - x} \) xác định \( \Leftrightarrow  - x \ge 0 \Leftrightarrow x \le 0\)

b. \(\sqrt {1 - x}  + \sqrt {1 + x} \) xác định \( \Leftrightarrow \left\{ {\matrix{   {1 - x \ge 0}  \cr   {1 + x \ge 0}  \cr  } } \right. \Leftrightarrow \left\{ {\matrix{   {x \le 1}  \cr   {x \ge  - 1}  \cr  } } \right.\)

\(\Leftrightarrow  - 1 \le x \le 1\)

Bài 2. Ta có:

\(\eqalign{  & f\left( 0 \right) = {0^2} + 1 = 1  \cr  & f\left( { - 2} \right) = {\left( { - 2} \right)^2} + 1 = 5  \cr  & f\left( {\sqrt 2 } \right) = {\left( {\sqrt 2 } \right)^2} + 1 = 3 \cr} \)

Bài 3. Với \({x_1},\,{x_2}\) bất kì thuộc \(\mathbb R\) và \({x_1}<{x_2}\). Ta có: \(f\left( {{x_1}} \right) = 2{x_1};f\left( {{x_2}} \right) = 2{x_2} \)

\(\Rightarrow f\left( {{x_1}} \right) - f\left( {{x_2}} \right) = 2\left( {{x_1} - {x_2}} \right)\)

Vì \({x_1}<{x_2}\)

\(\eqalign{  &  \Rightarrow {x_1} - {x_2} < 0 \Rightarrow 2\left( {{x_1} - {x_2}} \right) < 0  \cr  &  \Rightarrow f\left( {{x_1}} \right) - f\left( {{x_2}} \right) < 0 \cr&\Rightarrow f\left( {{x_1}} \right) < f\left( {{x_2}} \right) \cr} \)

Vậy hàm số đã cho đồng biến trên \(\mathbb R\).

Loigiaihay.com


Bình chọn:
4.2 trên 10 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài