Tuyensinh247.com giảm 30% các khóa học từ ngày 10-14/8
Xem ngay

Chỉ còn: 07:37:23

Bài 7 trang 46 SGK Toán 9 tập 1

Bình chọn:
4.2 trên 11 phiếu

Giải bài 7 trang 46 SGK Toán 9 tập 1. Cho hàm số y = f(x) = 3x.

Đề bài

Cho hàm số \(y = f(x) = 3x\).

Cho \(x\) hai giá trị bất kì \( x_{1},\ x_{2} \) sao cho \(x_{1}  < x_{2} \) .

Hãy chứng minh \(f(x_{1} ) < f(x_{2} )\) rồi rút ra kết luận hàm số đã cho đồng biến trên \(\mathbb{R}\).

Phương pháp giải - Xem chi tiết

+) Định nghĩa hàm số đồng biến:   Với \({x_1},{x_2} \in \mathbb{R}\):

     Nếu \( x_1  < x_2\)  và   \(f(x_1) < f(x_2)\)  thì hàm số \(y=f(x)\) đồng biến trên \(\mathbb{R}\).

+) Tính chất của bất đẳng thức: Với \(c > 0\) thì:

                 \(a < b \Leftrightarrow a.c < b.c\)

Lời giải chi tiết

Ta có: 

\(f\left( {{x_1}} \right) = 3{x_1}\)

\(f\left( {{x_2}} \right) = 3{x_2}\)

Theo giả thiết, lại có:

\(x_{1} < x_{2} \Leftrightarrow 3.x_{1} < 3.x_{2}\) ( vì \( 3 > 0 \) nên chiều bất đẳng thức không đổi)

               \( \Leftrightarrow f(x_1) < f(x_2)\) (đpcm)

Do vậy hàm số đồng biến trên \(\mathbb{R}\).

 

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan