Bài 7 trang 46 SGK Toán 9 tập 1


Giải bài 7 trang 46 SGK Toán 9 tập 1. Cho hàm số y = f(x) = 3x.

Đề bài

Cho hàm số \(y = f(x) = 3x\). 

Cho \(x\) hai giá trị bất kì \( x_{1},\ x_{2} \) sao cho \(x_{1}  < x_{2} \) .

Hãy chứng minh \(f(x_{1} ) < f(x_{2} )\) rồi rút ra kết luận hàm số đã cho đồng biến trên \(\mathbb{R}\).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

+) Định nghĩa hàm số đồng biến:   Với \({x_1},{x_2} \in \mathbb{R}\):

     Nếu \( x_1  < x_2\)  và   \(f(x_1) < f(x_2)\)  thì hàm số \(y=f(x)\) đồng biến trên \(\mathbb{R}\).

+) Tính chất của bất đẳng thức: Với \(c > 0\) thì: \(a < b \Leftrightarrow a.c < b.c\)

Lời giải chi tiết

Ta có:  

\(f\left( {{x_1}} \right) = 3{x_1}\)

\(f\left( {{x_2}} \right) = 3{x_2}\)

Theo giả thiết, ta có:

\(x_{1} < x_{2} \Leftrightarrow 3.x_{1} < 3.x_{2}\) ( vì \( 3 > 0 \) nên chiều bất đẳng thức không đổi)

\( \Leftrightarrow f(x_1) < f(x_2)\) (vì \(f\left( {{x_1}} \right) = 3{x_1};\)\(f\left( {{x_2}} \right) = 3{x_2})\)

Vậy với \(x_{1} < x_{2}\) ta được \(f(x_1) < f(x_2)\) nên hàm số \(y = 3x\) đồng biến trên \(\mathbb{R}\). 

Chú ý:

Ta cũng có thể làm như sau:

Vì \(x_{1}  < x_{2} \) nên \(x_{1}  - x_{2}<0\)

Từ đó: \(f(x_1)-f(x_2)=3x_1-3x_2=3(x_1-x_2)<0\) 

Hay \(f(x_1)<f(x_2)\) 

Vậy với \(x_{1} < x_{2}\) ta được \(f(x_1) < f(x_2)\) nên hàm số \(y = 3x\) đồng biến trên \(\mathbb{R}\).

Loigiaihay.com


Bình chọn:
4.6 trên 30 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài