Đề kiểm tra 15 phút - Đề số 4 - Bài 1 - Chương 2 - Đại số 9


Giải Đề kiểm tra 15 phút - Đề số 4 - Bài 1 - Chương 2 - Đại số 9

Đề bài

Bài 1. Cho hàm số \(y = f\left( x \right) =  - \sqrt 2 x.\) Tính : \(f\left( {\sqrt 2 } \right);f\left( { - \sqrt 2 } \right);f\left( {3\sqrt 2 } \right)\)

Bài 2. Chứng minh hàm số : \(y = f\left( x \right) =  - 2x + 1\) nghịch biến trên R.

Bài 3. Vẽ đồ thị của hàm số : \(y = \sqrt 2 x\)

Lời giải chi tiết

Bài 1. Ta có:

\(\eqalign{  & f\left( {\sqrt 2 } \right) = \left( { - \sqrt 2 } \right).\sqrt 2  =  - 2  \cr  & f\left( { - \sqrt 2 } \right) = {\left( { - \sqrt 2 } \right)^2} = 2  \cr  & f\left( {3\sqrt 2 } \right) = \left( { - \sqrt 2 } \right).\left( {3\sqrt 2 } \right) =  - 6 \cr} \)

Bài 2. Với \({x_1},\,{x_2}\) bất kì thuộc \(\mathbb R\) và \({x_1}<{x_2}\).

Ta có:

\( f\left( {{x_1}} \right) =  - 2x + 1;f\left( {{x_2}} \right) =  - 2{x_2} + 1  \)

\(\Rightarrow f\left( {{x_1}} \right) - f\left( {{x_2}} \right) = \left( { - 2{x_1} + 1} \right)\)\(\, - \left( { - 2{x_2} + 1} \right) =  - 2\left( {{x_1} - {x_2}} \right)  \)

Vì \({x_1}<{x_2}\)

\(\eqalign{  & \Rightarrow {x_1} - {x_2} < 0 \Rightarrow  - 2\left( {{x_1} - {x_2}} \right) > 0  \cr  &  \Rightarrow f\left( {{x_1}} \right) - f\left( {{x_2}} \right) > 0\cr& \Rightarrow f\left( {{x_1}} \right) > f\left( {{x_2}} \right) \cr} \)

Vậy hàm số đã cho nghịch biến trên \(\mathbb R\).

Bài 3. Bảng giá trị :

x

0

1

y

0

\(\sqrt 2 \)

Đồ thị của hàm số là đường thẳng qua hai điểm : \(O(0; 0)\) và \(A(1; \sqrt 2 \)).

(Hình vuông OCBD có \(OB = \sqrt 2 \) . Dựng đường tròn tâm O, bán kính OB cắt Oy tại P \( \Rightarrow OP = \sqrt 2  \Rightarrow A\left( {1;\sqrt 2 } \right)\) )

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài