Đề kiểm tra 15 phút - Đề số 3 - Bài 1 - Chương 2 - Đại số 9


Giải Đề kiểm tra 15 phút - Đề số 3 - Bài 1 - Chương 2 - Đại số 9

Đề bài

Bài 1. Tìm tập xác định của hàm số :

a. \(y = \sqrt 3 x\)

b. \(y = \sqrt {{{ - 1} \over {1 - x}}} \)

Bài 2. Cho hàm số \(y = f\left( x \right) = 2.\) Tính : \(f\left( 2 \right);\,f\left( { - 2} \right);\,f\left( {2 + \sqrt 2 } \right)\)

Bài 3. Chứng minh hàm số \(y=-x\) nghịch biến trên \(\mathbb R\).

Lời giải chi tiết

Bài 1. a. \(\sqrt 3 x\) xác định với mọi giá trị \(x\) thuộc \(\mathbb R\).

b. \(\sqrt {{{ - 1} \over {1 - x}}} \) xác định \( \Leftrightarrow \left\{ {\matrix{   {{{ - 1} \over {1 - x}} \ge 0}  \cr   {1 - x \ne 0}  \cr  } } \right. \Leftrightarrow 1 - x < 0 \Leftrightarrow x > 1\)

Bài 2. Hàm số đã cho làm hàm hằng. Vậy : \(f\left( 2 \right) = f\left( { - 2} \right) = f\left( {2 + \sqrt 2 } \right) = 2\)

Bài 3. Với \({x_1},\,{x_2}\) bất kì thuộc R và \({x_1}<{x_2}\). Ta có:

\(f\left( {{x_1}} \right) =  - {x_1};f\left( {{x_2}} \right) =  - {x_2} \)

\(  \Rightarrow f\left( {{x_1}} \right) - f\left( {{x_2}} \right) =  - {x_1} - \left( { - {x_2}} \right) \)\(=  - \left( {{x_1} - {x_2}} \right)  \)

Vì \({x_1}<{x_2}\) 

\(\eqalign{  &  \Rightarrow {x_1} - {x_2} < 0 \Rightarrow  - \left( {{x_1} - {x_2}} \right) > 0  \cr  &  \Rightarrow f\left( {{x_1}} \right) - f\left( {{x_2}} \right) > 0 \cr&\Rightarrow f\left( {{x_1}} \right) > f\left( {{x_2}} \right) \cr} \)

Vậy hàm số đã cho nghịch biến trên \(\mathbb R.\)

 Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài