Đề kiểm tra 15 phút - Đề số 7 - Bài 6 - Chương 4 - Đại số 9


Giải Đề kiểm tra 15 phút - Đề số 7 - Bài 6 - Chương 4 - Đại số 9

Lựa chọn câu để xem lời giải nhanh hơn

Đề bài

Bài 1: Cho phương trình \({x^2} - 2x + m + 2 = 0.\) Tìm m để phương trình có hai nghiệm \(x_1;x_2\) và \(x_1^2 + x_2^2 = 10.\)

Bài 2: Tìm m để phương trình \({x^2} - 2x + m = 0\) có hai nghiệm khác dấu.

Bài 3: Tìm m để hai phương trình sau tương đương :

\({x^2} + mx - 2 = 0\) và \({x^2} - 2x + m = 0\).

LG bài 1

Phương pháp giải:

Giả sử phương trình có hai nghiệm \(x_1;x_2\)

Sử dụng hệ thức vi-ét để tìm tổng và tích hai nghiệm  

\({x_1} + {x_2} =  - \frac{b}{a};{x_1}.{x_2} = \frac{c}{a}\)

Rồi thế vào biểu thức đề bài cho và kiểm tra lại

Lời giải chi tiết:

Bài 1: Giả sử phương trình có hai nghiệm \(x_1;x_2\). Theo định lí Vi-ét, ta có :

\(\left\{ \matrix{  {x_1} + {x_2} = 2 \hfill \cr  {x_1}{x_2} = m + 2 \hfill \cr}  \right.\)

Khi đó : \(x_1^2 + x_2^2 = 10 \)

\(\Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = 10\)

\( \Leftrightarrow 4 - 2\left( {m + 2} \right) = 10 \Leftrightarrow m =  - 5\)

Thử lại: với \(m = − 5\), ta có phương trình \(:{x^2} - 2x - 3 = 0.\)

\(a = 1; c = − 3  \Rightarrow  ac < 0.\) Vậy phương trình có nghiệm ( khác dấu).

( Nếu tìm điều kiện \(∆’ >\) 0 trước và xét \(x_1^2 + x_2^2 = 10\) sau thì không cần thử lại.

LG bài 2

Phương pháp giải:

Phương trình có hai nghiệm khác dấu \( \Leftrightarrow P < 0 \)

Lời giải chi tiết:

Bài 2: Phương trình có hai nghiệm khác dấu \( \Leftrightarrow P < 0 \Leftrightarrow m < 0.\)

LG bài 3

Phương pháp giải:

Xét hai trường hợp

Trường hợp 1 : Hai phương trình cùng vô nghiệm 

Trường hợp 2 : Hai phương trình có nghiệm

Lời giải chi tiết:

Bài 3:

+) Trường hợp 1 : Hai phương trình cùng vô nghiệm ( điều này không xảy ra vì phương trình \({x^2} + mx - 2 = 0\) có \(a = 1; c = − 2  \Rightarrow   ac < 0\) nên luôn có nghiệm).

+) Trường hợp 2 : Hai phương trình có nghiệm

\( \Leftrightarrow \left\{ \matrix{  {\Delta _1} \ge 0 \hfill \cr  \Delta {'_2} \ge 0 \hfill \cr}  \right. \Leftrightarrow \left\{ \matrix{  {m^2} + 8 \ge 0 \hfill \cr  1 - m \ge 0 \hfill \cr}  \right. \)\(\;\Leftrightarrow m \le 1.\)

Khi đó, hai phương trình tương đương \( \Leftrightarrow \left\{ \matrix{  {S_1} = {S_2} \hfill \cr  {P_1} = {P_2} \hfill \cr}  \right. \Leftrightarrow \left\{ \matrix{   - m = 2 \hfill \cr   - 2 = m \hfill \cr}  \right. \)\(\;\Leftrightarrow m =  - 2.\)

Vậy \(m = - 2.\)        

 Loigiaihay.com

 


Bình chọn:
4.9 trên 7 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài