Bài 27 trang 53 SGK Toán 9 tập 2


Giải bài 27 trang 53 SGK Toán 9 tập 2. Dùng hệ thức Vi-ét để tính nhẩm các nghiệm của phương trình

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Dùng hệ thức Vi-ét để tính nhẩm các nghiệm của phương trình.

LG a

\({x^2}-{\rm{ }}7x{\rm{ }} + {\rm{ }}12{\rm{ }} = {\rm{ }}0\)

Phương pháp giải:

Nếu \({x_1},{x_2}\) là hai nghiệm của phương trình \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\) thì

\(\left\{ \begin{array}{l}
{x_1} + {x_2} =  - \dfrac{b}{a}\\
{x_1}.{x_2} = \dfrac{c}{a}
\end{array} \right.\)

Giải chi tiết:

\({x^2}-{\rm{ }}7x{\rm{ }} + {\rm{ }}12{\rm{ }} = {\rm{ }}0\) có \(a = 1, b = -7, c = 12\)

Suy ra \(\Delta  = {\left( { - 7} \right)^2} - 4.1.12 = 1 > 0\)

Nên phương trình có 2 nghiệm \(x_1;x_2\), theo hệ thức Vi-et ta có:

\(\displaystyle{x_1} + {x_2} = {\rm{ }} - {{ - 7} \over 1} = 7 = 3 + 4\) 

\(\displaystyle{x_1}{x_2} = {\rm{ }}{{12} \over 1} = 12 = 3.4\)

Vậy \({x_1} = {\rm{ }}3,{\rm{ }}{x_2} = {\rm{ }}4\). 

LG b

\({x^2} + {\rm{ }}7x{\rm{ }} + {\rm{ }}12{\rm{ }} = {\rm{ }}0\)

Phương pháp giải:

Nếu \({x_1},{x_2}\) là hai nghiệm của phương trình \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\) thì

\(\left\{ \begin{array}{l}
{x_1} + {x_2} =  - \dfrac{b}{a}\\
{x_1}.{x_2} = \dfrac{c}{a}
\end{array} \right.\)

Giải chi tiết:

\({x^2} + {\rm{ }}7x{\rm{ }} + {\rm{ }}12{\rm{ }} = {\rm{ }}0\) có \(a = 1, b = 7, c = 12\)

Suy ra \(\Delta  = 7^2 - 4.1.12 = 1 > 0\)

Nên phương trình có 2 nghiệm \(x_1;x_2\) , theo hệ thức Vi-et ta có:

\(\displaystyle{x_1} + {x_2} = {\rm{ }} - {7 \over 1} =  - 7 =  - 3 + ( - 4)\)

\(\displaystyle{x_1}{x_2} = {\rm{ }}{{12} \over 1} = 12 = ( - 3).( - 4)\)

Vậy \({x_1} = {\rm{ }} - 3,{\rm{ }}{x_2} = {\rm{ }} - 4\).

Loigiaihay.com


Bình chọn:
4.1 trên 63 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài