Bài 32 trang 54 SGK Toán 9 tập 2

Bình chọn:
4.1 trên 35 phiếu

Giải bài 32 trang 54 SGK Toán 9 tập 2. Tìm hai số u và v trong mỗi trường hợp sau:

Đề bài

Tìm hai số u và v trong mỗi trường hợp sau:

a) \(u + v = 42\), \(uv = 441\);                        

b) \(u + v = -42\), \(uv = -400\);

c) \(u – v = 5\), \(uv = 24\).

Phương pháp giải - Xem chi tiết

Nếu hai số có tổng bằng S và tích bằng P (và thỏa mãn điều kiện \({S^2} - 4P\ge 0\) ) thì hai số đó là hai nghiệm của phương trình \({x^2} - Sx + P = 0\).

Sau đó tính \(\Delta\) hoặc \(\Delta'\) để tìm ra nghiệm của phương trình

Lời giải chi tiết

a) \(u + v = 42\), \(uv = 441\)  thỏa mãn điều kiện \({42^2} - 4.441 \ge 0\) => \(u, v\) là nghiệm của phương trình:

\({x^2}-{\rm{ }}42x{\rm{ }} + {\rm{ }}441{\rm{ }} = {\rm{ }}0\)

\(\Delta' {\rm{ }} = {\rm{ }}{21^2}-{\rm{ }}441{\rm{ }} = {\rm{ }}441{\rm{ }}-{\rm{ }}441{\rm{ }} = {\rm{ }}0\)

\({\rm{ }}\sqrt {\Delta '} {\rm{ }} = {\rm{ }}0;{\rm{ }}{x_1} = {\rm{ }}{x_2} = {\rm{ }}21\)

Vậy \(u = v = 21\)

b) \(u + v = -42, uv = -400\), thỏa mãn điều kiện \({\left( { - 42} \right)^2} + 4.440 \ge 0\) \(u, v\) là nghiệm của phương trình:

\({x^2} + {\rm{ }}42x{\rm{ }}-{\rm{ }}400{\rm{ }} = {\rm{ }}0\)

\(\Delta' {\rm{ }} = {\rm{ }}441{\rm{ }} + {\rm{ }}400{\rm{ }} = {\rm{ }}841\)

\(\sqrt {\Delta '} {\rm{ }} = {\rm{ }}29;{\rm{ }}{x_1} = {\rm{ }}8,{\rm{ }}{x_2} = {\rm{ }} - 50\).

Do đó: \(u = 8, v = -50\) hoặc \(u = -50, v = 8\)

c) \(u – v = 5, uv = 24\). Đặt \(–v = t\), ta có \(u + t = 5, ut = -24\),thỏa mãn điều kiện \({5^2} + 4.24 \ge 0\)

ta có \(u,t\) là nghiệm của phương trình: \({x^2} - 5x - 24 = 0\)

Giải ra ta được: \({x_1} = {\rm{ 8}},{\rm{ }}{x_2} = {\rm{  - 3}}\)

Vậy \(u = 8, t = -3\) hoặc \(u = -3, t = 8\).

Do đó: \(u = 8, v = 3\) hoặc \(u = -3, v = - 8\).

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

Các bài liên quan: - Bài 6. Hệ thức Vi-ét và ứng dụng

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa . Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu