Bài 30 trang 54 SGK Toán 9 tập 2

Bình chọn:
3.9 trên 45 phiếu

Giải bài 30 trang 54 SGK Toán 9 tập 2. Tìm giá trị của m để phương trình có nghiệm

Đề bài

Tìm giá trị của m để phương trình có nghiệm, rồi tính tổng và tích các nghiệm theo m.

a) \({x^2}-{\rm{ }}2x{\rm{ }} + {\rm{ }}m{\rm{ }} = {\rm{ }}0\);                       

b) \({x^2}-{\rm{ }}2\left( {m{\rm{ }}-{\rm{ }}1} \right)x{\rm{ }} + {\rm{ }}{m^2} = {\rm{ }}0\)

Phương pháp giải - Xem chi tiết

+) Phương pháp tìm m để phương trình có nghiệm: Cho phương trình \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\), điều kiện để phương trình có nghiệm là: \(\Delta  \ge 0\,\,\left( {\Delta ' \ge 0} \right)\)

Trong đó \(\Delta  = {b^2} - 4ac;\,\,\Delta ' = b{'^2} - ac;\,b' = \frac{b}{2}\)

+) Tính tổng và tích các nghiệm:

Nếu \({x_1},{x_2}\) là hai nghiệm của phương trình \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\) thì

\(\left\{ \begin{array}{l}
{x_1} + {x_2} =  - \frac{b}{a}\\
{x_1}.{x_2} = \frac{c}{a}
\end{array} \right.\)

Lời giải chi tiết

a) Phương trình \({x^2}-{\rm{ }}2x{\rm{ }} + {\rm{ }}m{\rm{ }} = {\rm{ }}0\) có nghiệm khi \(\Delta '{\rm{ }} = {\rm{ }}1{\rm{ }} - {\rm{ }}m{\rm{ }} \ge {\rm{ }}0\) hay khi \(m ≤ 1\)

Khi đó \({x_{1}} + {\rm{ }}{x_{2}} = {\rm{ }}2\), \({\rm{ }}{x_{1}}.{\rm{ }}{x_2} = {\rm{ }}m\)

b) Phương trình \({x^2}-{\rm{ }}2\left( {m{\rm{ }}-{\rm{ }}1} \right)x{\rm{ }} + {\rm{ }}{m^2} = {\rm{ }}0\) có nghiệm khi

  \(\Delta '{\rm{ }} = {\rm{ }}{m^{2}} - {\rm{ }}2m{\rm{ }} + {\rm{ }}1{\rm{ }}-{\rm{ }}{m^2} = {\rm{ }}1{\rm{ }}-{\rm{ }}2m{\rm{ }} \ge {\rm{ }}0\) 

hay khi \(m  ≤\) \(\frac{1}{2}\)

Khi đó \({x_{1}} + {\rm{ }}{x_2} = {\rm{ }}2\left( {m{\rm{ }}-{\rm{ }}1} \right)\), \({\rm{ }}{x_{1}}.{\rm{ }}{x_2} = {\rm{ }}{m^2}\)

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 9 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan