Bài 25 trang 52 SGK Toán 9 tập 2


Giải bài 25 trang 52 SGK Toán 9 tập 2. Đối với phương trình sau, kí hiệu

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

 Đối với phương trình sau, kí hiệu x1 và x2 là hai nghiệm (nếu có). Không giải phương trình, hãy điền vào những chố trống (..):

LG a

\(2{x^2}-{\rm{ }}17x{\rm{ }} + {\rm{ }}1{\rm{ }} = {\rm{ }}0\)

\({\rm{ }}{\rm{ }}\Delta {\rm{ }} = {\rm{ }} \ldots ,{\rm{ }}{x_1} + {\rm{ }}{x_2} = {\rm{ }} \ldots ,{\rm{ }}{x_1}{x_2} = {\rm{ }} \ldots \)

Phương pháp giải:

1. Công thức tính \(\Delta  = {b^2} - 4ac\)

2. Nếu \({x_1},{x_2}\) là hai nghiệm của phương trình \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\) thì

\(\left\{ \begin{array}{l}
{x_1} + {x_2} =  - \dfrac{b}{a}\\
{x_1}.{x_2} = \dfrac{c}{a}
\end{array} \right.\)

Lời giải chi tiết:

\(2{x^2}-{\rm{ }}17x{\rm{ }} + {\rm{ }}1{\rm{ }} = {\rm{ }}0\) có \(a = 2, b = -17, c = 1\)

\(\Delta {\rm{ }} = {\rm{ }}{\left( { - 17} \right)^2}-{\rm{ }}4{\rm{ }}.{\rm{ }}2{\rm{ }}.{\rm{ }}1{\rm{ }} = {\rm{ }}289{\rm{ }}-{\rm{ }}8{\rm{ }} = {\rm{ }}281\)

\(\displaystyle{x_1} + {x_2} =  - {{ - 17} \over 2} = {{17} \over 2};{x_1}{x_2} = {1 \over 2}\)

LG b

\(5{x^2}-{\rm{ }}x{\rm{ }} - {\rm{ }}35{\rm{ }} = {\rm{ }}0\)

\({\rm{ }}{\rm{ }}{\rm{ }}\Delta {\rm{ }} = {\rm{ }} \ldots ,{\rm{ }}{x_1} + {\rm{ }}{x_2} = {\rm{ }} \ldots ,{\rm{ }}{x_1}{x_2} = {\rm{ }} \ldots \)

Phương pháp giải:

1. Công thức tính \(\Delta  = {b^2} - 4ac\)

2. Nếu \({x_1},{x_2}\) là hai nghiệm của phương trình \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\) thì

\(\left\{ \begin{array}{l}
{x_1} + {x_2} =  - \dfrac{b}{a}\\
{x_1}.{x_2} = \dfrac{c}{a}
\end{array} \right.\)

Lời giải chi tiết:

\(5{x^2}-{\rm{ }}x{\rm{ }} - {\rm{ }}35{\rm{ }} = {\rm{ }}0\) có \(a = 5, b = -1, c = -35\)

\(\Delta  = {\left( { - 1} \right)^2}-{\rm{ }}4{\rm{ }}.{\rm{ }}5{\rm{ }}.{\rm{ }}\left( { - 35} \right) = 1 + 700 = 701\)

\(\displaystyle{x_1} + {x_2} =  - {{ - 1} \over 5} = {\rm{ }}{1 \over 5};{x_1}{x_2} = {{ - 35} \over 5} =  - 7\)

LG c

\(8{x^2}-{\rm{ }}x{\rm{ }} + {\rm{ }}1{\rm{ }} = {\rm{ }}0\)

\(\Delta  = {\rm{ }} \ldots ,{\rm{ }}{x_1} + {\rm{ }}{x_2} = {\rm{ }} \ldots ,{\rm{ }}{x_1}{x_2} = {\rm{ }} \ldots \)

Phương pháp giải:

1. Công thức tính \(\Delta  = {b^2} - 4ac\)

2. Nếu \({x_1},{x_2}\) là hai nghiệm của phương trình \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\) thì

\(\left\{ \begin{array}{l}
{x_1} + {x_2} =  - \dfrac{b}{a}\\
{x_1}.{x_2} = \dfrac{c}{a}
\end{array} \right.\)

Lời giải chi tiết:

\(8{x^2}-{\rm{ }}x{\rm{ }} + {\rm{ }}1{\rm{ }} = {\rm{ }}0\) có \(a = 8, b = -1, c = 1\)

\(\Delta {\rm{ }} = {\rm{ }}{\left( { - 1} \right)^2}-{\rm{ }}4{\rm{ }}.{\rm{ }}8{\rm{ }}.{\rm{ }}1{\rm{ }} = {\rm{ }}1{\rm{ }} - {\rm{ }}32{\rm{ }} = {\rm{ }} - 31{\rm{ }} < {\rm{ }}0\)

Phương trình vô nghiệm nên không có hệ thức Viet tổng và tích 2 nghiệm.

LG d

\(25{x^2} + {\rm{ }}10x{\rm{ }} + {\rm{ }}1{\rm{ }} = {\rm{ }}0\)

\({\rm{ }}\Delta {\rm{ }} = {\rm{ }} \ldots ,{\rm{ }}{x_1} + {\rm{ }}{x_2} = {\rm{ }} \ldots ,{\rm{ }}{x_1}{x_2} = {\rm{ }} \ldots \)

Phương pháp giải:

1. Công thức tính \(\Delta  = {b^2} - 4ac\)

2. Nếu \({x_1},{x_2}\) là hai nghiệm của phương trình \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\) thì

\(\left\{ \begin{array}{l}
{x_1} + {x_2} =  - \dfrac{b}{a}\\
{x_1}.{x_2} = \dfrac{c}{a}
\end{array} \right.\)

Lời giải chi tiết:

\(25{x^2} + {\rm{ }}10x{\rm{ }} + {\rm{ }}1{\rm{ }} = {\rm{ }}0\) có \(a = 25, b = 10, c = 1\)

\(\Delta  = {\rm{ }}{10^2}-{\rm{ }}4{\rm{ }}.{\rm{ }}25{\rm{ }}.{\rm{ }}1{\rm{ }} = {\rm{ }}100{\rm{ }} - {\rm{ }}100{\rm{ }} = {\rm{ }}0\)

\(\displaystyle{x_1} + {x_2} =  - {{10} \over {25}} =  - {2 \over 5};{x_1}{x_2} = {1 \over {25}}\)

Loigiaihay.com


Bình chọn:
4.1 trên 63 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài